This report is on studies directed at the nature of magneto-electric (ME) coupling by ferromagnetic resonance (FMR) under an electric field in a coaxial nanofiber of nickel ferrite (NFO) and lead zirconate titanate (PZT). Fibers with ferrite cores and PZT shells were prepared by electrospinning. The core–shell structure of annealed fibers was confirmed by electron- and scanning probe microscopy. For studies on converse ME effects, i.e., the magnetic response of the fibers to an applied electric field, FMR measurements were done on a single fiber with a near-field scanning microwave microscope (NSMM) at 5–10 GHz by obtaining profiles of bothmore »
Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers
Abstract This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
- Publication Date:
- NSF-PAR ID:
- 10171400
- Journal Name:
- MRS Communications
- Volume:
- 10
- Issue:
- 2
- Page Range or eLocation-ID:
- 230 to 241
- ISSN:
- 2159-6859
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract For the last few years, the research interest in magnetoelectric (ME) effect, which is the cross-coupling between ferroelectric and magnetic ordering in multiferroic materials, has experienced a significant revival. The extensive recent studies are not only conducted towards the design of sensors, actuators, transducers, and memory devices by taking advantage of the cross-control of polarization (or magnetization) by magnetic (or electric) fields, but also aim to create a clearer picture in understanding the sources of ME responses and the novel effects associated with them. Here we derive analytical models allowing to understand the striking and novel dynamics of MEmore »
-
Hybrid organic–inorganic composites possessing both electronic and magnetic properties are promising materials for a wide range of applications. Controlled and ordered arrangement of the organic and inorganic components is key for synergistic cooperation toward desired functions. In this work, we report the self-assemblies of core–shell composite nanofibers from conjugated block copolymers and magnetic nanoparticles through the cooperation of orthogonal non-covalent interactions. We show that well-defined core–shell conjugated polymer nanofibers can be obtained through solvent induced self-assembly and polymer crystallization, while hydroxy and pyridine functional groups located at the shell of nanofibers can immobilize magnetic nanoparticles via hydrogen bonding and coordinationmore »
-
The coupling between ferroelectric and magnetic order provides a powerful means to control magnetic properties with electric fields. In this study, we have investigated the magnetoelectric (ME) coupling in iridate-oxide based superlattices employing first-principles density functional theory (DFT) calculations. In particular, we have investigated several oxide superlattices, including (SrIrO 3 ) 1 –(CaTiO 3 ) 1 (SIO–CTO) and (SrIrO 3 ) 1 –(BaTiO 3 ) 1 (SIO–BTO), with an alternating single layer of SIO and CTO/BTO. We identify a very large ME coupling in SIO–BTO mediated by both lattice and electronic contributions. In comparison, moderate ME coupling constants are foundmore »
-
Today, magnetic hyperthermia constitutes a complementary way to cancer treatment. This article reports a promising aspect of magnetic hyperthermia addressing superparamagnetic and highly Fe/Au core-shell nanoparticles. Those nanoparticles were prepared using a wet chemical approach at room temperature. We found that the as-synthesized core shells assembled with spherical morphology, including face-centered-cubic Fe cores coated and Au shells. The high-resolution transmission microscope images (HRTEM) revealed the formation of Fe/Au core/shell nanoparticles. The magnetic properties of the samples showed hysteresis loops with coercivity (HC) close to zero, revealing superparamagnetic-like behavior at room temperature. The saturation magnetization (MS) has the value of 165more »