Monolithic coupling of the implicit material point method with the finite element method
                        
                    - Award ID(s):
- 1912902
- PAR ID:
- 10171403
- Date Published:
- Journal Name:
- Computers & Structures
- Volume:
- 219
- Issue:
- C
- ISSN:
- 0045-7949
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Epistemic uncertainty quantification is a crucial part of drawing credible conclusions from predictive models, whether concerned about the prediction at a given point or any downstream evaluation that uses the model as input. When the predictive model is simple and its evaluation differentiable, this task is solved by the delta method, where we propagate the asymptotically-normal uncertainty in the predictive model through the evaluation to compute standard errors and Wald confidence intervals. However, this becomes difficult when the model and/or evaluation becomes more complex. Remedies include the bootstrap, but it can be computationally infeasible when training the model even once is costly. In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of the predictive model to automatically assess downstream uncertainty. We show that the change in the evaluation due to regularization is consistent for the asymptotic variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference. This provides both a reliable quantification of uncertainty in terms of standard errors as well as permits the construction of calibrated confidence intervals. We discuss connections to other approaches to uncertainty quantification, both Bayesian and frequentist, and demonstrate our approach empirically.more » « less
- 
            Background and Objective: Higuchi’s method of determining fractal dimension (HFD) occupies a valuable place in the study of a wide variety of physical signals. In comparison to other methods, it provides more rapid, accurate estimations for the entire range of possible fractal dimensions. However, a major difficulty in using the method is the correct choice of tuning parameter (kmax) to compute the most accurate results. In the past researchers have used various ad hoc methods to determine the appropriate kmax choice for their particular data. We provide a more objective method of determining, a priori, the best value for the tuning parameter, given a particular length data set. Methods: We create numerous simulations of fractional Brownian motion to perform Monte Carlo simulations of the distribution of the calculated HFD. Results: Experimental results show that HFD depends not only on kmax but also on the length of the time series, which enable derivation of an expression to find the appropriate kmax for an input time series of unknown fractal dimension. Conclusion: The Higuchi method should not be used indiscriminately without reference to the type of data whose fractal dimension is examined. Monte Carlo simulations with different fractional Brownian motions increases the confidence of evaluation results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    