. Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to address this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable.
more »
« less
The Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA): Decision Support and Data Visualization for Statewide Rainfall Dat
This paper discusses the design and implementation of the Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA) decision support tool. HI-RAMA provides researchers and community stakeholders interactive access to and visualization of hosted historical and near-real-time monthly rainfall maps and aggregated rainfall station observational data for the State of Hawai‘i. The University of Hawai‘i Information Technology Services Cyberinfrastructure team in partnership with members of the Hawai‘i Established Program to Stimulate Competitive Research (EPSCoR) ‘Ike Wai project team developed this application as part of the ‘Ike Wai Gateway to support water sustainability research for the state of Hawai‘i. This tool is designed to provide user-friendly access to information that can reveal the impacts of climate changes related to precipitation so users can make data-driven decisions.
more »
« less
- Award ID(s):
- 1931575
- PAR ID:
- 10171513
- Date Published:
- Journal Name:
- Practice and Experience in Advanced Research Computi
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal). Significance StatementA new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output.more » « less
-
Abstract The Hawaiian Islands have some of the most spatially diverse rainfall patterns on Earth, affected by prevailing trade winds, midlatitude disturbances, tropical cyclones, and complex island topography. However, it is the only state in the United States that does not have assigned climate divisions (boundaries defining climatically homogeneous areas), which excludes it from many national climate analyses. This study establishes, for the first time, official climate divisions for the state of Hawai‘i using cluster analysis applied to monthly gridded rainfall data from 1990 to 2019. Twelve climate divisions have been identified: two divisions were found each for the islands of Kaua‘i (Leeward Kaua‘i and Windward Kaua‘i), O‘ahu (Waianae and Ko‘olau), and Maui County (Leeward Maui Nui and Windward Maui Nui), and six divisions were identified for Hawai‘i Island (Leeward Kohala, Windward Kohala, Kona, Hawai‘i Mauka, Ka‘u, and Hilo). The climate divisions were validated using a statewide area-weighted division-average rainfall index which successfully captured the annual cycle and interannual rainfall variations in the statewide average rainfall series. Distinct rainfall seasonality features and interannual/decadal variability are found among the different divisions; Leeward Maui Nui, Leeward Kaua‘i, Kona, and Hawai‘i Mauka displayed the most significant rainfall seasonality. The western Hawai‘i Island divisions show the most significant long-term decreasing trends in annual rainfall during the past 100 years (ranging from −2.5% to −5.0% per decade). With these climate divisions now available, Hawai‘i will have access to numerous operational climate analyses that will greatly improve climatic research, monitoring, education, and outreach, as well as forecasting applications. Significance StatementThe Hawaiian Islands have some of the most spatially diverse climate patterns on Earth, but it is the only state in the United States that does not have assigned climate divisions, which excludes it from many national climate analyses. This paper establishes official climate divisions for the state of Hawai‘i, filling an incredibly important gap in the National Oceanic and Atmospheric Administration (NOAA)’s national coverage, moving toward better data equity and coverage outside the contiguous United States. Distinct rainfall seasonality features and interannual/decadal variability are revealed and compared among the different divisions. With these climate divisions now available, Hawai‘i will have access to numerous operational climate analyses that will greatly improve climatic research, monitoring, education, and outreach, as well as forecasting applications.more » « less
-
In collaboration with the Center for Microbiome Analysis through Island Knowledge and Investigations (C-MĀIKI), the Hawaii EPSCoR Ike Wai project and the Hawaii Data Science Institute, a new science gateway, the C-MĀIKI gateway, was developed to support modern, interoperable and scalable microbiome data analysis. This gateway provides a web-based interface for accessing high-performance computing resources and storage to enable and support reproducible microbiome data analysis. The C-MĀIKI gateway is accelerating the analysis of microbiome data for Hawaii through ease of use and centralized infrastructure.more » « less
-
Abstract The Hawai‘i Climate Data Portal (HCDP) is designed to facilitate streamlined access to a wide variety of climate data and information for the State of Hawai‘i. Prior to the development of the HCDP, gridded climate products and point datasets were fragmented, outdated, not easily accessible, and not available in near–real time. To address these limitations, HCDP researchers developed the cyberinfrastructure necessary to 1) operationalize data acquisition and product production in a near-real-time environment and 2) make data and products easily accessible to a wide range of users. The HCDP hosts several high-resolution (250 m) gridded products including monthly rainfall and daily temperature (maximum, minimum, and mean), station data, and gridded future projections of rainfall and temperature. HCDP users can visualize both gridded and point data, create and download custom maps, and query station and gridded data for export with relative ease. The “virtual station” feature allows users to create a climate time series at any grid point. The primary objective of the HCDP is to promote sharing and access to data and information to streamline research activities, improve awareness, and promote the development of tools and resources that can help to build adaptive capacities. The HCDP products have the potential to serve a wide range of users including researchers, resource managers, city planners, engineers, teachers, students, civil society organizations, and the broader community.more » « less
An official website of the United States government

