skip to main content


Search for: All records

Award ID contains: 1931575

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The goal of a robust cyberinfrastructure (CI) ecosystem is to catalyse discovery and innovation. Tapis does this through offering a sustainable production-quality set of API services to support modern science and engineering research, which increasingly span geographically distributed data centers, instruments, experimental facilities, and a network of national and regional CI. Leveraging frameworks, such as Tapis, enables researchers to accomplish computational and data-intensive research in a secure, scalable, and reproducible way and allows them to focus on their research instead of the technology needed to accomplish it. This project aims to enable the integration of the Google Cloud Platform (GCP) and CloudyCluster resources into Tapis- supported science gateways to provide on-demand scaling needed by computational workflows. The new functionality uses Tapis event-driven Abaco Actors and CloudyCluster to create an elastic distributed cloud computing system on demand. This integration allows researchers and science gateways to augment cloud resources on top of existing local and national computing resources. 
    more » « less
  2. The Tapis Streams API is a production grade quality service that provides REST APIs for storing, processing and analyzing real-time streaming data. This paper focuses on improvements made to Tapis 1.0 Streams API for making it up-to-date and easily accessible. The newer version, Tapis 1.2 Streams API adopts the latest version of InfluxDB, InfluxDB 2.X, which has built-in security features and supports next generation data analytics and processing with a data processing language Flux. This paper also discusses the measures implemented in the Tapis 1.2 Streams API to mitigate potential security risks involved in unauthorized data stream access by users who do not own it. Additionally, new data Channel Actions supporting 3rd Party notification and web-hooks has been released. Lastly a tool, Tapis UI, which is a self contained server less application to access Tapis Services via rest calls is discussed in the paper. Tapis UI is a lightweight browser only client application which allows interactive access to Streams resources and real-time streaming data. 
    more » « less
  3. In collaboration with the Center for Microbiome Analysis through Island Knowledge and Investigations (C-MĀIKI), the Hawaii EPSCoR Ike Wai project and the Hawaii Data Science Institute, a new science gateway, the C-MĀIKI gateway, was developed to support modern, interoperable and scalable microbiome data analysis. This gateway provides a web-based interface for accessing high-performance computing resources and storage to enable and support reproducible microbiome data analysis. The C-MĀIKI gateway is accelerating the analysis of microbiome data for Hawaii through ease of use and centralized infrastructure. 
    more » « less
  4. The C-MĀIKI gateway is a science gateway that leverages a computational workload management API called Tapis to support modern, interoperable, and scalable microbiome data analysis. This project is focused on migrating an existing C-MĀIKI gateway pipeline from Tapis v2 to Tapis v3 so that it can take advantage of the new robust Tapis v3 features and stay modern. This requires three major steps: 1) Containerization of each existing microbiome workflow. 2) Create a new app definition for each of the workflows. 3) Enabling the ability to submit jobs to a SLURM scheduler inside of a singularity container to support the Nextflow workflow manager. This work presents the experience and challenges in upgrading the pipeline. 
    more » « less
  5. This article discusses the design and implementation of the Hawai'i Groundwater Recharge Tool, an application for providing data and analyses of the impacts of land-cover modifications and changes in precipitation on groundwater-recharge rates for the island of O'ahu. This application uses simulation data based on a set of 29 land-cover types and 2 precipitation conditions to provide users with real-time recharge calculations for interactively defined land-cover modifications. The tool provides two visualizations, representing the land cover for the island and the resultant groundwater-recharge rates, and a set of metrics indicating the changes to groundwater recharge for relevant areas to present a set of easily interpretable outcomes based on user-defined scenarios. Users have varying degrees of control over the granularity of data input and output, allowing for the quick production of a roughly defined scenario, or more precise land-cover definitions. These modifications can be exported for further analysis. Heuristics are used to provide a responsive user interface and performant integration with the database containing the full set of simulation data. This tool is designed to provide user-friendly access to the information on the impacts of land-cover and precipitation changes on groundwater-recharge rates needed to assist in making data-driven decisions. 
    more » « less
  6. This paper discusses the design and implementation of the Hawai‘i Rainfall Analysis and Mapping Application (HI-RAMA) decision support tool. HI-RAMA provides researchers and community stakeholders interactive access to and visualization of hosted historical and near-real-time monthly rainfall maps and aggregated rainfall station observational data for the State of Hawai‘i. The University of Hawai‘i Information Technology Services Cyberinfrastructure team in partnership with members of the Hawai‘i Established Program to Stimulate Competitive Research (EPSCoR) ‘Ike Wai project team developed this application as part of the ‘Ike Wai Gateway to support water sustainability research for the state of Hawai‘i. This tool is designed to provide user-friendly access to information that can reveal the impacts of climate changes related to precipitation so users can make data-driven decisions. 
    more » « less
  7. In the last decade, the rise of hosted Software-as-a-Service (SaaS) application programming interfaces (APIs) across both academia and industry has exploded, and simultaneously, microservice architectures have replaced monolithic application platforms for the flexibility and maintainability they offer. These SaaS APIs rely on small, independent and reusable microservices that can be assembled relatively easily into more complex applications. As a result, developers can focus on their own unique functionality and surround it with fully functional, distributed processes developed by other specialists, which they access through APIs. The Tapis framework, a NSF funded project, provides SaaS APIs to allow researchers to achieve faster scientific results, by eliminating the need to set up a complex infrastructure stack. In this paper, we describe the best practices followed to create Tapis APIs using Python and the Stream API as an example implementation illustrating authorization and authentication with the Tapis Security Kernel, Tenants and Tokens APIs, leveraging OpenAPI v3 specification for the API definitions and docker containerization. Finally, we discuss our deployment strategy with Kubernetes, which is an emerging orchestration technology and the early adopter use cases of the Streams API service. 
    more » « less
  8. . Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to address this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable. 
    more » « less