skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Validation of a Powered Knee–Ankle Prosthesis With High-Torque, Low-Impedance Actuators
In this article, we present the design of a powered knee–ankle prosthetic leg, which implements high-torque actuators with low-reduction transmissions. The transmission coupled with a high-torque and low-speed motor creates an actuator with low mechanical impedance and high backdrivability. This style of actuation presents several possible benefits over modern actuation styles in emerging robotic prosthetic legs, which include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, less acoustic noise, and power regeneration. Benchtop tests establish that both joints can be backdriven by small torques ( ∼ 1–3 N ⋅ m) and confirm the small reflected inertia. Impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback or lengthy tuning trials. Walking experiments validate performance under the designed loading conditions with minimal tuning. Finally, the regenerative abilities, low friction, and small reflected inertia of the presented actuators reduced power consumption and acoustic noise compared to state-of-the-art powered legs.  more » « less
Award ID(s):
1637704 1854898
PAR ID:
10171851
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Robotics
ISSN:
1552-3098
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise. 
    more » « less
  2. Design of rehabilitation and physical assistance robots that work safely and efficiently despite uncertain operational conditions remains an important challenge. Current methods for the design of energy efficient series elastic actuators use an optimization formulation that typically assumes known operational requirements. This approach could lead to actuators that cannot satisfy elongation, speed, or torque requirements when the operation deviates from nominal conditions. Addressing this gap, we propose a convex optimization formulation to design the stiffness of series elastic actuators to minimize energy consumption and satisfy actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. To achieve convexity, we write energy consumption as a scalar convex-quadratic function of compliance. As actuator constraints, we consider peak motor torque, peak motor velocity, limitations due to the speed-torque relationship of DC motors, and peak elongation of the spring. We apply our formulation to the robust design of a series elastic actuator for a powered prosthetic ankle. Our simulation results indicate that a small trade-off between energy efficiency and robustness is justified to design actuators that can operate with uncertainty. 
    more » « less
  3. null (Ed.)
    Cooperative robots or “cobots” promise to allow humans and robots to work together more closely while maintaining safety. However, to date the capabilities of cobots are greatly diminished compared to industrial robots in terms of the force and power they are able to safely produce. This is in part due to the actuation choices of cobots. Low impedance robotic actuators aim to solve this problem by attempting to provide an actuator with a combination of low output impedance and a large bandwidth of force control. In short the ideal actuator has a large dynamic range. Existing actuators success and performance has been limited. We propose a high force and high power balanced hybrid active-passive actuator which aims to increase the actuation capability of low impedance actuators and to safely enable high performance larger force and workspace robots. Our balanced hybrid actuator does so, by combining and controlling a series elastic actuator, a small DC motor, and a particle brake in parallel. The actuator provides low and high frequency power producing active torques, along with power absorbing passive torques. Control challenges and advantages of hybrid actuators are discussed and overcome through the use of trajectory optimization, and the safety of the new actuator is evaluated. 
    more » « less
  4. The mechanical impedance of the human lower-limb joints during locomotion encodes our understanding of how the neuromotor system regulates the behavior of these tasks. Impedance is also a key component of several strategies for translating this behavior to robots, powered prosthetic limbs, and people empowered by exoskeletons. However, due to difficulty in making accurate measurements, there is little empirical evidence for the impedance behaviors of joints other than the ankle during active walking tasks. In this letter we propose a measurement system based on a highly backdrivable quasi-direct-drive actuator and a carefully calibrated actuator torque model. Bench-top validation with known mechanical impedance human-substitutes, confirms the viability of this system as an impedance measurement tool. A pilot study with two subjects utilizing a custom knee-exoskeleton apparatus confirms the feasibility of this system for human walking experiments. 
    more » « less
  5. Abstract Powered exoskeletons need actuators that are lightweight, compact, and efficient while allowing for accurate torque control. To satisfy these requirements, researchers have proposed using series elastic actuators (SEAs). SEAs use a spring in series with rotary or linear actuators. The spring compliance, in conjunction with an appropriate control scheme, improves torque control, efficiency, output impedance, and disturbance rejection. However, springs add weight to the actuator and complexity to the control, which may have negative effects on the performance of the powered exoskeleton. Therefore, there is an unmet need for new SEA designs that are lighter and more efficient than available systems, as well as for control strategies that push the performance of SEA-based exoskeletons without requiring complex modeling and tuning. This article presents the design, development, and testing of a novel SEA with high force density for powered exoskeletons, as well as the use of a two degree-of-freedom (2DOF) PID system to improve output impedance and disturbance rejection. Benchtop testing results show reduced output impedance and damping values when using a 2DOF PID controller as compared to a 1DOF PID controller. Human experiments with three able-bodied subjects (N = 3) show improved torque tracking with reduced root-mean-square error by 45.2% and reduced peak error by 49.8% when using a 2DOF PID controller. Furthermore, EMG data shows a reduction in peak EMG value when using the exoskeleton in assistive mode compared to the exoskeleton operating in transparent mode. 
    more » « less