skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and Lessons Deploying a Physical System for Resource Exchange in Local Communities
This interactive poster will discuss challenges and lessons learned designing and deploying ShareBox, a hardware-based system that enables people to share physical resources within local communities. Our goal in sharing the insights and struggles we encountered creating ShareBox is to help other researchers working on similar platforms to avoid the pitfalls that impacted our research.  more » « less
Award ID(s):
1665169
PAR ID:
10171861
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CSCW '19: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new method to generate optimal grasps for brittle and fragile objects using a novel stressminimization (SM) metric. Our approach is designed for objects that are composed of homogeneous isotopic materials. Our SM metric measures the maximal resistible external wrenches that would not result in fractures in the target objects. In this paper, we propose methods to compute our new metric. We also use our SM metric to design optimal grasp planning algorithms. Finally, we compare the performance of our metric and conventional grasp metrics, including Q1, Q∞, QG11, QMSV , QV EW . Our experiments show that our SM metric takes into account the material characteristics and object shapes to indicate the fragile regions, where prior methods may not work well. We also show that the computational cost of our SM metric is on par with prior methods. Finally, we show that grasp planners guided by our metric can lower the probability of breaking target objects. 
    more » « less
  2. Haptic illusions provide unique insights into how we model our bodies separate from our environment. Popular illusions like the rubber-hand illusion and mirror-box illusion have demonstrated that we can adapt the internal representations of our limbs in response to visuo-haptic conflicts. In this manuscript, we extend this knowledge by investigating to what extent, if any, we also augment our external representations of the environment and its action on our bodies in response to visuo-haptic conflicts. Utilizing a mirror and a robotic brushstroking platform, we create a novel illusory paradigm that presents a visuo-haptic conflict using congruent and incongruent tactile stimuli applied to participants' fingers. Overall, we observed that participants perceived an illusory tactile sensation on their visually occluded finger when seeing a visual stimulus that was inconsistent with the actual tactile stimulus provided. We also found residual effects of the illusion after the conflict was removed. These findings highlight how our need to maintain a coherent internal representation of our body extends to our model of our environment. 
    more » « less
  3. We present a neural network approach for approximating the value function of high- dimensional stochastic control problems. Our training process simultaneously updates our value function estimate and identifies the part of the state space likely to be visited by optimal trajectories. Our approach leverages insights from optimal control theory and the fundamental relation between semi-linear parabolic partial differential equations and forward-backward stochastic differential equations. To focus the sampling on relevant states during neural network training, we use the stochastic Pontryagin maximum principle (PMP) to obtain the optimal controls for the current value function estimate. By design, our approach coincides with the method of characteristics for the non-viscous Hamilton-Jacobi-Bellman equation arising in deterministic control problems. Our training loss consists of a weighted sum of the objective functional of the control problem and penalty terms that enforce the HJB equations along the sampled trajectories. Importantly, training is unsupervised in that it does not require solutions of the control problem. Our numerical experiments highlight our scheme’s ability to identify the relevant parts of the state space and produce meaningful value estimates. Using a two-dimensional model problem, we demonstrate the importance of the stochastic PMP to inform the sampling and compare to a finite element approach. With a nonlinear control affine quadcopter example, we illustrate that our approach can handle complicated dynamics. For a 100-dimensional benchmark problem, we demonstrate that our approach improves accuracy and time-to-solution and, via a modification, we show the wider applicability of our scheme. 
    more » « less
  4. This paper addresses the problem of training a robot to carry out temporal tasks of arbitrary complexity via evaluative human feedback that can be inaccurate. A key idea explored in our work is a kind of curriculum learning—training the robot to master simple tasks and then building up to more complex tasks. We show how a training procedure, using knowledge of the formal task representation, can decompose and train any task efficiently in the size of its representation. We further provide a set of experiments that support the claim that non-expert human trainers can decompose tasks in a way that is consistent with our theoretical results, with more than half of participants successfully training all of our experimental missions. We compared our algorithm with existing approaches and our experimental results suggest that our method outperforms alternatives, especially when feedback contains mistakes. 
    more » « less
  5. We present a generalized constitutive model for versatile physics simulation of inviscid fluids, Newtonian viscosity, hyperelasticity, viscoplasticity, elastoplasticity, and other physical effects that arise due to a mixture of these behaviors. The key ideas behind our formulation are the design of a generalized Kirchhoff stress tensor that can describe hyperelasticity, Newtonian viscosity and inviscid fluids, and the use of pre-projection and post-correction rules for simulating material behaviors that involve plasticity, including elastoplasticity and viscoplasticity. We show how our generalized Kirchhoff stress tensor can be coupled together into a generalized constitutive model that allows the simulation of diverse material behaviors by only changing parameter values. We present several side-by-side comparisons with physics simulations for specific constitutive models to show that our generalized model produces visually similar results. More notably, our formulation allows for inverse learning of unknown material properties directly from data using differentiable physics simulations. We present several 3D simulations to highlight the robustness of our method, even with multiple different materials. To the best of our knowledge, our approach is the first to recover the knowledge of unknown material properties without making explicit assumptions about the data. 
    more » « less