skip to main content


Title: Effects of Onset Latency and Robot Speed Delays on Mimicry-Control Teleoperation
In this paper, we study the effects of delays in a mimicry-control robot teleoperation interface which involves a user moving their arms to directly show the robot how to move and the robot follows in real time. Unlike prior work considering delays in other teleoperation systems, we consider delays due to robot slowness in addition to latency in the onset of movement commands. We present a human-subjects study that shows how different amounts and types of delays have different effects on task performance. We compare the movements under different delays to reveal the strategies that operators use to adapt to delay conditions and to explain performance differences. Our results show that users can quickly develop strategies to adapt to slowness delays but not onset latency delays. We discuss the implications of our results for the future development of methods designed to mitigate the effects of delays.  more » « less
Award ID(s):
1830242
NSF-PAR ID:
10172199
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
HRI '20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
519 to 527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Network latency is a major problem in Cloud Robotics for human robot interactions such as teleoperation. Routing delays can be highly variable in a heterogeneous computing environment, imposing challenges to reliably teleoperate a robot with a closed-loop feedback controller. By sharing Gaussian Mixture Models (GMMs), Hidden Semi- Markov Models (HSMMs), and linear quadratic tracking (LQT) con- trollers between the cloud and the robot. We build a motion recognition, segmentation, and synthesis framework for Cloud Robotic teleoperation; and we introduce a set of latency mitigation network protocols under this framework. We use this framework in experiments with a dynamic robot arm to perform learned hand-written letter motions.We then study the motion recognition errors, motion synthesis errors, and the latency mitigation performance. 
    more » « less
  2. Abstract

    In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.

     
    more » « less
  3. We explore task tolerances, i.e., allowable position or rotation inaccuracy, as an important resource to facilitate smooth and effective telemanipulation. Task tolerances provide a robot flexibility to generate smooth and feasible motions; however, in teleoperation, this flexibility may make the user’s control less direct. In this work, we implemented a telema- nipulation system that allows a robot to autonomously adjust its configuration within task tolerances. We conducted a user study comparing a telemanipulation paradigm that exploits task tolerances (functional mimicry) to a paradigm that requires the robot to exactly mimic its human operator (exact mimicry), and assess how the choice in paradigm shapes user experience and task performance. Our results show that autonomous adjustments within task tolerances can lead to performance improvements without sacrificing perceived control of the robot. Additionally, we find that users perceive the robot to be more under control, predictable, fluent, and trustworthy in functional mimicry than in exact mimicry. 
    more » « less
  4. Background: The increasing prevalence of robots in industrial environments is attributed in part to advancements in collaborative robot technologies, enabling robots to work in close proximity to humans. Simultaneously, the rise of teleoperation, involving remote robot control, poses unique opportunities and challenges for human-robot collaboration (HRC) in diverse and distributed workspaces. Purpose: There is not yet a comprehensive understanding of HRC in teleoperation, specifically focusing on collaborations involving the teleoperator, the robot, and the local or onsite workers in industrial settings, here referred to as teleoperator-robot-human collaboration (tRHC). We aimed to identify opportunities, challenges, and potential applications of tRHC through insights provided from industry stakeholders, thereby supporting effective future industrial implementations. Methods: Thirteen stakeholders in robotics, specializing in different domains (i.e., safety, robot manufacturing, aerospace/automotive manufacturing, and supply chains), completed semi-structured interviews that focused on exploring diverse aspects relevant to tRHC. The interviews were then transcribed and thematic analysis was applied to group responses into broader categories, which were further compared across stakeholder industries. Results We identified three main categories and 13 themes from the interviews. These categories include Benefits, Concerns, and Technical Challenges. Interviewees highlighted accessibility, ergonomics, flexibility, safety, time & cost saving, and trust as benefits of tRHC. Concerns raised encompassed safety, standards, trust, and workplace optimization. Technical challenges consisted of critical issues such as communication time delays, the need for high dexterity in robot manipulators, the importance of establishing shared situational awareness among all agents, and the potential of augmented and virtual reality in providing immersive control interfaces. Conclusions: Despite important challenges, tRHC could offer unique benefits, facilitating seamless collaboration among the teleoperator, teleoperated robot(s), and onsite workers across physical and geographic boundaries. To realize such benefits and address the challenges, we propose several research directions to further explore and develop tRHC capabilities. 
    more » « less
  5. Edge computing has emerged as a popular paradigm for running latency-sensitive applications due to its ability to offer lower network latencies to end-users. In this paper, we argue that despite its lower network latency, the resource-constrained nature of the edge can result in higher end-to-end latency, especially at higher utilizations, when compared to cloud data centers. We study this edge performance inversion problem through an analytic comparison of edge and cloud latencies and analyze conditions under which the edge can yield worse performance than the cloud. To verify our analytic results, we conduct a detailed experimental comparison of the edge and the cloud latencies using a realistic application and real cloud workloads. Both our analytical and experimental results show that even at moderate utilizations, the edge queuing delays can offset the benefits of lower network latencies, and even result in performance inversion where running in the cloud would provide superior latencies. We finally discuss practical implications of our results and provide insights into how application designers and service providers should design edge applications and systems to avoid these pitfalls. 
    more » « less