skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravitational thermodynamics of causal diamonds in (A)dS
The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a ``first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation,it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the ``entanglement equilibrium'' result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed.  more » « less
Award ID(s):
1708139
PAR ID:
10173059
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SciPost Physics
Volume:
7
Issue:
6
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Due to a well-known, but curious, minus sign in the Gibbons-Hawking first law for the static patch of de Sitter space, the entropy of the cosmological horizon is reduced by the addition of Killing energy. This minus sign raises the puzzling question how the thermodynamics of the static patch should be understood. We argue the confusion arises because of a mistaken interpretation of the matter Killing energy as the total internal energy, and resolve the puzzle by introducing a system boundary at which a proper thermodynamic ensemble can be specified. When this boundary shrinks to zero size the total internal energy of the ensemble (the Brown-York energy) vanishes, as does its variation. Part of this vanishing variation is thermalized, captured by the horizon entropy variation, and part is the matter contribution, which may or may not be thermalized. If the matter is in global equilibrium at the de Sitter temperature, the first law becomes the statement that the generalized entropy is stationary. 
    more » « less
  2. Abstract In general relativity (without matter), there is typically a one parameter family of static, maximally symmetric black hole solutions labeled by their mass. We show that there are situations with many more black holes. We study asymptotically anti-de Sitter solutions in six and seven dimensions having a conformal boundary which is a product of spheres cross time. We show that the number of families of static, maximally symmetric black holes depends on the ratio, λ , of the radii of the boundary spheres. As λ approaches a critical value, λ c , the number of such families becomes infinite. In each family, we can take the size of the black hole to zero, obtaining an infinite number of static, maximally symmetric non-black hole solutions. We discuss several applications of these results, including Hawking–Page phase transitions and the phase diagram of dual field theories on a product of spheres, new positive energy conjectures, and more. 
    more » « less
  3. We develop a formalism for computing the scattering amplitudes in maximally symmetric de Sitter spacetime with compact spatial dimensions. We describe quantum states by using the representation theory of de Sitter symmetry group and link the Hilbert space to “inertial” geodesic observers. The positive and negative “energy” wavefunctions are uniquely determined by the requirement that in observer's neighborhood, short wavelengths propagate as plane waves with positive and negative frequencies, respectively; they define a unique “Euclidean” (a.k.a. Bunch-Davies) de Sitter invariant vacuum, common to all inertial observers. By following the same steps as in Minkowski spacetime, we show that the scattering amplitudes are given by a generalized Dyson's formula. Compared to the flat case, they describe the scattering of wavepackets with the frequency spectrum determined by geometry. The frequency spread shrinks as the masses and/or momenta become larger than the curvature scale. Asymptotically, de Sitter amplitudes agree with the amplitudes evaluated in Minkowski spacetime. 
    more » « less
  4. A<sc>bstract</sc> We study the partition function of 3D de Sitter gravity defined as the trace over the Hilbert space obtained by quantizing the phase space of non-rotating Schwarzschild-de Sitter spacetime. Motivated by the correspondence with double scaled SYK, we identify the Hamiltonian with the gravitational Wilson-line that measures the conical deficit angle. We express the Hamiltonian in terms of canonical variables and find that it leads to the exact same chord rules and energy spectrum as the double scaled SYK model. We use the obtained match to compute the partition function and scalar two-point function in 3D de Sitter gravity. 
    more » « less
  5. We derive the Einstein equation from the condition that every small causal diamond is a variation of a flat empty diamond with the same free conformal energy, as would be expected for a near-equilibrium state. The attractiveness of gravity hinges on the negativity of the absolute temperature of these diamonds, a property we infer from the generalized entropy. 
    more » « less