skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Scattering of quantum particles in global de Sitter spacetime I: The formalism
We develop a formalism for computing the scattering amplitudes in maximally symmetric de Sitter spacetime with compact spatial dimensions. We describe quantum states by using the representation theory of de Sitter symmetry group and link the Hilbert space to “inertial” geodesic observers. The positive and negative “energy” wavefunctions are uniquely determined by the requirement that in observer's neighborhood, short wavelengths propagate as plane waves with positive and negative frequencies, respectively; they define a unique “Euclidean” (a.k.a. Bunch-Davies) de Sitter invariant vacuum, common to all inertial observers. By following the same steps as in Minkowski spacetime, we show that the scattering amplitudes are given by a generalized Dyson's formula. Compared to the flat case, they describe the scattering of wavepackets with the frequency spectrum determined by geometry. The frequency spread shrinks as the masses and/or momenta become larger than the curvature scale. Asymptotically, de Sitter amplitudes agree with the amplitudes evaluated in Minkowski spacetime.  more » « less
Award ID(s):
2209903
PAR ID:
10645681
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier B.V.
Date Published:
Journal Name:
Nuclear physics B
ISSN:
0550-3213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a ``first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation,it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the ``entanglement equilibrium'' result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed. 
    more » « less
  2. A<sc>bstract</sc> In perturbative string theory, one is generally interested in asymptotic observables, such as the S-matrix in flat spacetime, and boundary correlation functions in anti-de Sitter spacetime. However, there are backgrounds in which such observables do not exist. We study examples of such backgrounds in 1 + 1 dimensional string theory. In these examples, the Liouville wall accelerates and can become spacelike in the past and/or future. When that happens, the corresponding null infinity, at which the standard scattering states are defined, is shielded by the Liouville wall. We compute scattering and particle production amplitudes in these backgrounds in the region in parameter space where the wall remains timelike, and discuss the continuation of this picture to the spacelike regime. We also discuss the physics from the point of view of the dynamics of free fermions in backgrounds with a time-dependent Fermi surface. 
    more » « less
  3. A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter. 
    more » « less
  4. Billinge, Simon (Ed.)
    Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2-dimensions. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other’s clocks as their own, while retaining their original space coordinates; the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well-known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞⁄m)m which is that of a cylinder in 3D, and that of hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica® script is provided for plotting the MS and RBS geometries discussed in the work. 
    more » « less
  5. A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail. 
    more » « less