skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Electromagnetically induced transparency and lattice resonances in metasurfaces composed of silicon nanocylinders
Densely packed metasurfaces composed of cylindrical silicon nano-resonators were found to demonstrate the phenomenon of electromagnetically induced transparency at electric dipolar resonances. It was shown that this phenomenon is not related to overlapping of dipolar resonances or to the Kerker’s effects. The observed transparency appeared to be related to interference between waves scattered by nano-resonators and by additional scattering centers including the electric branch of lattice resonances. Coupled resonance fields were also found to contribute to observed phenomena.  more » « less
Award ID(s):
1709991
NSF-PAR ID:
10173209
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
7th Advanced Electromagnetics Symposium, Lisbon, Portugal
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An array of surface-mounted prismatic resonators in the path of Rayleigh wave propagation generates two distinct types of surface-wave bandgaps: longitudinal and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh wave with the longitudinal and flexural resonances of the resonators, respectively. Longitudinal-resonance bandgaps are broad with asymmetric transmission drops, whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission drops. In this paper, we illuminate these observations by investigating the resonances and anti-resonances of the resonator. With an understanding of how the Rayleigh wave interacts with different boundary conditions, we investigate the clamping conditions imposed by prismatic resonators due to the resonator’s resonances and anti-resonances and interpret the resulting transmission spectra. We demonstrate that, in the case of a single resonator, only the resonator’s longitudinal and flexural resonances are responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both the resonances and the anti-resonances of the resonators contribute to the formation of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps where only the flexural resonances play a role. We also provide an explanation for the observed asymmetry in the transmission drop within the longitudinal-resonance bandgaps by assessing the clamping conditions imposed by the resonators. Finally, we evaluate the transmission characteristics of resonator arrays at the anti-resonance frequencies by varying a few key geometric parameters of the unit cell. These findings provide the conceptual understanding required to design optimized resonators based on matching anti-resonance frequencies with the incident Rayleigh wave frequency in order to achieve enhanced Rayleigh wave suppression. 
    more » « less
  2. Due to differences in solar illumination, a geomagnetic field line may have one footpoint in a dark ionosphere while the other ionosphere is in daylight. This may happen near the terminator under solstice conditions. In this situation, a resonant wave mode may appear which has a node in the electric field in the sunlit (high conductance) ionosphere and an antinode in the dark (low conductance) ionosphere. Thus, the length of the field line is one quarter of the wavelength of the wave, in contrast with half-wave field line resonances in which both ionospheres are nodes in the electric field. These quarter waves have resonant frequencies that are roughly a factor of 2 lower than the half-wave frequency on the field line. We have simulated these resonances using a fully three-dimensional model of ULF waves in a dipolar magnetosphere. The ionospheric conductance is modeled as a function of the solar zenith angle, and so this model can describe the change in the wave resonance frequency as the ground magnetometer station varies in local time. The results show that the quarter-wave resonances can be excited by a shock-like impulse at the dayside magnetosphere and exhibit many of the properties of the observed waves. In particular, the simulations support the notion that a conductance ratio between day and night footpoints of the field line must be greater than about 5 for the quarter waves to exist. 
    more » « less
  3. Abstract

    Due to differences in solar illumination, a geomagnetic field line may have one foot point in a dark ionosphere while the other ionosphere is in daylight. This may happen near the terminator under solstice conditions. In this situation, a resonant wave mode may appear, which has a node in the electric field in the sunlit (high conductance) ionosphere and an antinode in the dark (low conductance) ionosphere. Thus, the length of the field line is one quarter of the wavelength of the wave, in contrast with half‐wave field line resonances in which both ionospheres are nodes in the electric field. These quarter waves have resonant frequencies that are roughly a factor of 2 lower than the half‐wave frequency on the field line. We have simulated these resonances using a fully three‐dimensional model of ULF waves in a dipolar magnetosphere. The ionospheric conductance is modeled as a function of the solar zenith angle, and so this model can describe the change in the wave resonance frequency as the ground magnetometer station varies in local time. The results show that the quarter‐wave resonances can be excited by a shock‐like impulse at the dayside magnetosphere and exhibit many of the properties of the observed waves. In particular, the simulations support the notion that a conductance ratio between day and night foot points of the field line must be greater than about 5 for the quarter waves to exist.

     
    more » « less
  4. Abstract

    The nature of nonlinear magnetoelectric (NLME) effect has been investigated at room-temperature in a single-crystal Zn substituted nickel ferrite. Tuning of the frequency of magnetostatic surface wave (MSSW) modes under an applied pulsed DC electric field/current has been utilized to probe the effect. The frequencies of the modes at 8–20 GHz were found to decrease by ~ 400 MHz for an applied DC powerPof ~ 100 mW and the frequency shift was the same for all of the MSSW modes and linearly proportional toP. A model is proposed for the effect and the NLME phenomenon was interpreted in terms of a reduction in the saturation magnetization due to the DC current. The decrease of magnetization with applied electric power, estimated from data on mode frequency versusP, was − 2.50 G/mW. The frequency tuning efficiency of the MSSW modes due to NLME effects in the ferrite resonator was found to be 4.1 MHz/mW which is an order of magnitude higher than the shift reported for M-type strontium and barium hexaferrite resonators investigated earlier. The spinel ferrite resonator discussed here has the potential for miniature, electric field tunable, planar microwave devices for the 8–20 GHz frequency range.

     
    more » « less
  5. In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead, on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 10 7 . Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are compared with the results of numerical simulations based on a multi-sphere Mie theory. This work opens the door for developing large arrays of coupled high-Q spherical resonators. 
    more » « less