skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertical Profiles of Ozone Concentration Collected by an Unmanned Aerial Vehicle and the Mixing of the Nighttime Boundary Layer over an Amazonian Urban Area
The nighttime boundary layer was studied in an urban area surrounded by tropical forest by use of a copter-type unmanned aerial vehicle (UAV) in central Amazonia during the wet season. Fifty-seven vertical profiles of ozone concentration, potential temperature, and specific humidity were collected from surface to 500 m above ground level (a.g.l.) at high vertical and temporal resolutions by use of embedded sensors on the UAV. Abrupt changes in ozone concentration with altitude served as a proxy of nighttime boundary layer (NBL) height for the case of a normal, undisturbed, stratified nighttime atmosphere, corresponding to 40% of the cases. The median height of the boundary layer was 300 m. A turbulent mixing NBL constituted 28% of the profiles, while the median height of the boundary layer was 290 m. The remaining 32% of profiles corresponded to complex atmospheres without clear boundary layer heights. The occurrence of the three different cases correlated well with relative cloud cover. The results show that the standard nighttime model widely implemented in chemical transport models holds just 40% of the time, suggesting new challenges in modeling of regional nighttime chemistry. The boundary layer heights were also somewhat higher than observed previously over forested and pasture areas in Amazonia, indicating the important effect of the urban heat island.  more » « less
Award ID(s):
1829025
PAR ID:
10173421
Author(s) / Creator(s):
Date Published:
Journal Name:
Atmosphere
Volume:
10
ISSN:
2073-4433
Page Range / eLocation ID:
599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nighttime vertical profiles of ozone, PM2.5 and PM10 particulate matter, carbon monoxide, temperature, and humidity were collected by a copter-type unmanned aerial vehicle (UAV) over the city of Manaus, Brazil, in central Amazon during the dry season of 2018. The vertical profiles were analyzed to understand the structure of the urban nighttime boundary layer (NBL) and pollution within it. The ozone concentration, temperature, and humidity had an inflection between 225 and 350 m on most nights, representing the top of the urban NBL. The profile of carbon monoxide concentration correlated well with the local evening vehicular congestion of a modern transportation fleet, providing insight into the surface-atmosphere dynamics. In contrast, events of elevated PM2.5 and PM10 concentrations were not explained well by local urban emissions, but rather by back trajectories that intersected regional biomass burning. These results highlight the potential of the emerging technologies of sensor payloads on UAVs to provide new constraints and insights for understanding the pollution dynamics in nighttime boundary layers in urban regions. 
    more » « less
  2. Canopy heights and vertical profiles were analyzed for 12 airborne lidar tracks acquired over forests of the mid-Juruá region, Brazil. Canopy height models were classified at 1m resolution as floodplain, terrace, hillslope, or interfluvial flat; floodplains were further separated according to Horton-Strahler (HS) stream order. RH95 canopy heights, and vertical profiles at 1m intervals, were aggregated to 30m scale and compared with Copernicus DEM heights, using a DEM transform, the Relative Terrain Height (RTH). Median canopy height ranged from 15.4 m for the Juruá floodplain to 25.5 m for hillslopes; maximum canopy heights varied from 37.4 m to 60.0 m. A strong correlation between RTH and median canopy height (r = 0.75) was found for the Juruá floodplain tracks. Vertical profiles of Juruá floodplain tracks showed that the height above ground of maximum returns increased monotonically with RTH height. Our results clearly show the influence of floodplain topography on forest canopy structure. 
    more » « less
  3. The lake breeze circulation along Lake Michigan is associated with high tropospheric ozone concentrations at shoreline locations. The 2021 Wisconsin's Dynamic Influence of Shoreline Circulation on Ozone (WiscoDISCO-21) campaign involved atmospheric measurements over Chiwaukee Prairie State Natural Area in Southeastern Wisconsin from May 21–26, 2021. Three different platforms, two uncrewed aerial systems (UAS) and a Doppler lidar instrument, were used to collect data on this campaign, supplemented by a ground-based Wisconsin DNR maintained regulatory monitor at the site. A Purdue University M210 multirotor copter, and the University of Colorado RAAVEN fixed-wing aircraft were flown in coordination. Using data from the ground station, RAAVEN and onsite lidar, lake breezes were detected on several days of the campaign. The longest sustained lake breezes during the campaign were detected on May 22, 2021, from 17:00–21:38 UTC and on May 24, 2021, from 14:24–22:51 UTC. The presence of the lake breezes correlated with detected temperature inversions measured from the RAAVEN and high ozone events measured from the M210. Lake breezes were investigated with their relationship to vertical profiles measured on the UAS, ozone concentrations, and marine boundary layer height observed with Doppler lidar to demonstrate a multi-layered lower atmosphere. A buoyant internal boundary layer was observed over land from 40–100 m AGL below highest ozone concentrations. Marine layer extent was investigated through minimum buoyancy and Richardson number analysis, showing limited vertical mixing at altitudes up to 200 m AGL, below easterly lake breeze circulation patterns extending upward to 400 m AGL in the late day. 
    more » « less
  4. Ozone deposition measurements in forested environments are of interest to constrain background processes in models as well as better identify ozone exposure to the ecosystem. Ozone deposition in forested environments can arise through stomatal conductance in plants and dry deposition to soils. As a part of the CHEESEHEAD 19 field campaign, ozone measurements were obtained at two different heights (120 m and 30 m) on a tall tower. In comparison to those measurements, a hexacopter UAS was flown with a small, lightweight ozone monitor and meteorological sensor measuring temperature and humidity. The hexacopter was hovered at certain altitudes to determine ozone concentration gradients. The vertical gradients observed will be discussed in context of tower ozone concentration measurements and other meteorological parameters 
    more » « less
  5. The Wisconsin’s Dynamic Influence of Shoreline Circulation on Ozone (WiscoDISCO) campaign involved obtaining atmospheric measurements to create a model of atmospheric layering of a shoreline environment impacted by high concentrations of ozone. During the 2021 and 2022 campaigns, Uncrewed Aerial Systems (UAS) were flown at a Lake Michigan shoreline in southeastern Wisconsin to obtain overwater and overland measurements of air temperature, relative humidity, ozone concentration, and wind speed and direction. Measurements from WiscoDISCO 21 and 22 have been used to characterize the marine layer using height of maximum buoyancy suppression. During WiscoDISCO-21 fixed wing observations and Doppler lidar also provided measurements of winds to higher altitudes (up to 2 km AGL for lidar and 500 m AGL for fixed-wing UAS) such that lake breeze circulation patterns opposing synoptic flow can be characterized by maximum height of easterly winds. Marine layer depth analysis has been compared to the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) model output of planetary boundary layer heights at locations over water and over land. The marine layer dimensionality, layering of ozone concentrations within inversion, and agreement between observations and HRRR model and will be discussed. 
    more » « less