skip to main content


Title: Quantification of naproxen in equine plasma for doping control in horse racing using strong anion exchange solid phase extraction followed by liquid chromatography with UV detection
A method using strong anion exchange solid phase extraction (SAX-SPE) followed by liquid chromatography ultraviolet detection (LC-UV) for the analysis of flunixin in equine plasma for doping control in horse racing has been developed. By using SAX-SPE, commonly regulated non-steroidal anti-inflammatory drugs (NSAIDs) by the United States Equestrian Federation (USEF), i.e. PBZ, OPBZ, diclofenac, flunixin, ketoprofen, meclofenamic acid and naproxen, and an internal standard, i.e. flurbiprofen, were first selectively extracted. Then, baseline separation of flunixin from other NSAIDs, the internal standard, and residual components of equine plasma was achieved using LC-UV. Finally, flunixin in equine plasma was quantified after an internal calibration curve was created.  more » « less
Award ID(s):
1827209
NSF-PAR ID:
10173902
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
111th Illinois State Academy of Science Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A method using strong anion exchange solid phase extraction (SAX-SPE) followed by liquid chromatography ultraviolet detection (LC-UV) for the analysis of phenylbutazone (PBZ) and its metabolite oxyphenbutazone (OPBZ) in equine plasma for doping control in horse racing has been developed. By using SAX-SPE, commonly regulated non-steroidal anti-inflammatory drugs (NSAIDs) by the United States Equestrian Federation (USEF), i.e. PBZ, OPBZ, diclofenac, flunixin, ketoprofen, meclofenamic acid and naproxen, and an internal standard, i.e. tolfenamic acid, were first selectively extracted. Then, baseline separation of PBZ, OPBZ from other NSAIDs, internal standard, and residual components of equine plasma was achieved using LC-UV. Finally, PBZ and OPBZ in equine plasma were quantified after an internal calibration curve was created. 
    more » « less
  2. After attending this presentation, attendees will gain knowledge in the strategy to achieve high-throughput and simultaneous analysis of cannabinoids and appreciate a validated LC-UV method for analysis of twelve cannabinoids in hemp oil. This presentation will first impact the forensic science community by introducing three fast LC separations of twelve cannabinoids that can be used with either UV or mass spectrometric (MS) detection. It will further impact the forensic science community by introducing a validated LC-UV method for high-throughput and simultaneous analysis of twelve cannabinoids in hemp oil, which can be routinely used by cannabis testing labs. In recent years, the use of products of Cannabis sativa L. for medicinal purposes has been in a rapid growth, although their preparation procedure has not been clearly standardized and their quality has not been well regulated. To analyze the therapeutic components, i.e. cannabinoids, in products of Cannabis sativa L., LC-UV has been frequently used, because LC-UV is commonly available and usually appropriate for routine analysis by the cannabis growers and commercial suppliers. In the literature, a few validated LC-UV methods have been described. However, so far, all validated LC-UV methods only focused in the quantification of eleven or less cannabinoids. Therefore, a method able to simultaneously analyze more cannabinoids in a shorter run time is still in high demand, because more and more cannabinoids have been isolated and many of them have shown medicinal properties. In this study, the LC separation of twelve cannabinoids, including cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidiol (CBD), cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabinol (CBN), delta-8 tetrahydrocannabinol (Δ8-THC), delta-9 tetrahydrocannabinolic acid A (Δ9-THCA A), delta-9 tetrahydrocannabinol (Δ9-THC), and tetrahydrocannabivarin (THCV), has been systematically optimized using a Phenomenex Luna Omega 3 µm Polar C18 150 mm × 4.6 mm column with regard to the effects of the type of organic solvent, i.e. methanol and acetonitrile, the content of the organic solvent, and the pH of the mobile phase. The optimization has resulted in three LC conditions at 1.0 mL/minute able to separate the twelve cannabinoids: 1) a mobile phase consisting of water and methanol, both containing 0.1% formic acid (pH 2.69), with a gradient elution at 75% methanol for the first 3 minutes and then linearly increase to 100% methanol at 12.5 minutes; 2) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.1% formic acid and 20 mM ammonium formate (pH 3.69), with an isocratic elution at 75% acetonitrile for 14 minutes; and 3) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.03% formic acid and 20 mM ammonium formate (pH 4.20), with an isocratic elution at 75% acetonitrile for 14 minutes. In order to demonstrate the effectiveness of the achieved LC separations, a LC-UV method is further validated for the high-throughput and simultaneous analysis of twelve cannabinoids. The method used the mobile phase at pH 3.69, which resulted in significant improvement in throughput compared to other validated LC-UV methods published so far. The method used flurbiprofen as the internal standard. The linear calibration range of all the cannabinoids were between 0.1 to 25 ppm with R2≥0.9993. The LOQ (S/N=10) of the cannabinoids was between 17.8 and 74.2 ppb. The validation used a hemp oil containing 3.2 wt% CBD and no other cannabinoids, which was reported by the vendor with a certificate of analysis, as the matrix to prepare control samples: the hemp oil was first extracted using liquid-liquid extraction (LLE) with methanol; cannabinoids were then spiked into the extract at both 0.5 ppm and 5 ppm level. Afterwards, the recovery, precision (%RSD) and accuracy (%Error) of the control samples were assessed and the results met the requirements by the ISO/IEC 17025 and ASTM E2549-14 guidelines. 
    more » « less
  3. Bacterial–fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial–fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles ( i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority. 
    more » « less
  4. Desktop 3D printing stereolithography (SLA) is a fabrication technique based on photopolymerization that can be used to efficiently create novel reaction devices for laboratory geochemistry with complex features (e.g. internal channels, small volumes) that are beyond the capabilities of traditional machining methods. However, the stability of 3D printed parts for low-temperature aqueous geochemical conditions has not been carefully evaluated. Furthermore, it is unclear what criteria should be used when attempting to optimize the mechanical and chemical properties during post-processing steps. Addressing these challenges is important for determining the suitability of 3D printed devices for laboratory investigations such as mineral precipitation/dissolution ex- periments. Here, we use thermogravimetric analysis (TGA) profiles, dynamic mechanical analysis (DMA), and chemical extraction of leachables to show how ultraviolet (UV) post-curing can optimize properties of a com- mercial photo-reactive resin (Formlabs Standard Clear). The mechanical and chemical stability of the post-cured material was enhanced and a working temperature of up to 80 °C was determined. We further provide data showing the stability and compatibility of the material in aqueous conditions of pH 0, 5.7 and 12. As SLA 3D printing is still an emerging and rapidly developing technology, the method presented here will provide a fra- mework for assessing how new printer types and materials (i.e. resins) impact the suitability of SLA printed devices for future experimental studies. 
    more » « less
  5. Abstract This protocol describes a high‐throughput absolute quantification protocol for the aromatic essential amino acid, tryptophan (Trp). This procedure consists of a milligram‐scale alkaline hydrolysis followed by an absolute quantification step using a multiple reaction monitoring tandem mass spectrometric (LC‐MS/MS) detection method. The approach facilitates the analysis of a few hundred samples per week by using a 96‐well plate extraction setup. Importantly, the method uses only ∼4 mg of tissue per sample and uses the common alkaline hydrolysis protocol, followed by water extraction that includes L ‐Trp‐d5 as an internal standard to enable the quantification of the absolute level of the bound Trp with high precision, accuracy, and reproducibility. The protocol described herein has been optimized for seed samples for Arabidopsis thaliana , Glycine max , and Zea mays but could be applied to other plant tissues. © 2023 Wiley Periodicals LLC. Basic Protocol : Analysis of protein‐bound tryptophan from seeds 
    more » « less