- Award ID(s):
- 1806983
- Publication Date:
- NSF-PAR ID:
- 10174255
- Journal Name:
- Remote Sensing
- Volume:
- 12
- Issue:
- 9
- Page Range or eLocation-ID:
- 1510
- ISSN:
- 2072-4292
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The Yenisei River is the largest contributor of freshwater and energy fluxes among all rivers draining to the Arctic Ocean. Modeling long-term variability of Eurasian runoff to the Arctic Ocean is complicated by the considerable variability of river discharge in time and space, and the monitoring constraints imposed by a sparse gauged-flow network and paucity of satellite data. We quantify tree growth response to river discharge at the upper reaches of the Yenisei River in Tuva, South Siberia. Two regression models built from eight tree-ring width chronologies of Larix sibirica are applied to reconstruct winter (Nov–Apr) discharge for the period 1784–1997 (214 years), and annual (Oct–Sept) discharge for the period 1701–2000 (300 years). The Nov–Apr model explains 52% of the discharge variance whereas Oct–Sept explains 26% for the calibration intervals 1927–1997 and 1927–2000, respectively. This new hydrological archive doubles the length of the instrumental discharge record at the Kyzyl gauge and resets the temporal background of discharge variability back to 1784. The reconstruction finds a remarkable 80% upsurge in winter flow over the last 25 years, which is unprecedented in the last 214 years. In contrast, annual discharge fluctuated normally for this system, with only a 7% increase overmore »
-
Water scarcity during severe droughts has profound hydrological and ecological impacts on rivers. However, the drying dynamics of river surface extent during droughts remains largely understudied. Satellite remote sensing enables surveys and analyses of rivers at fine spatial resolution by providing an alternative to in-situ observations. This study investigates the seasonal drying dynamics of river extent in California where severe droughts have been occurring more frequently in recent decades. Our methods combine the use of Landsat-based Global Surface Water (GSW) and global river bankful width databases. As an indirect comparison, we examine the monthly fractional river extent (FrcSA) in 2071 river reaches and its correlation with streamflow at co-located USGS gauges. We place the extreme 2012–2015 drought into a broader context of multi-decadal river extent history and illustrate the extraordinary change between during- and post-drought periods. In addition to river extent dynamics, we perform statistical analyses to relate FrcSA with the hydroclimatic variables obtained from the National Land Data Assimilation System (NLDAS) model simulation. Results show that Landsat provides consistent observation over 90% of area in rivers from March to October and is suitable for monitoring seasonal river drying in California. FrcSA reaches fair (>0.5) correlation with streamflow except formore »
-
Abstract High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018.
https://doi.org/10.1029/2018GL078926 ) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching themore » -
Abstract
This dataset includes rainfall, cloud, river and stream hydro-chemistry of the Plynlimon research catchments. The data is from weekly monitoring of stream hydrochemistry of the River Hafren (Severn) at both the Lower and Upper Hafren site from 1998, stream hydrochemistry of the River Hore at the Lower Hore site from 1983 and Upper Hore site from 1984 as well as rainfall hydrochemistry near the Carreg Wen meteorological site from 1983 and cloud hydrochemistry near the Carreg Wen meteorological site from 1990. Data for over 50 chemical determinands are presented alongside data for some in-situ measurements such as water temperature. Full descriptions of the analytical methods used for each determinand is included. The Plynlimon research catchments lie within the headwaters of the River Severn and the River Wye in the uplands of mid-Wales. Intensive and long-term monitoring within the catchments underpins a wealth of hydrological and hydro-chemical research; other linked datasets include river flow, meteorology and a variety of detailed spatial datasets representing the topography, soils and rivers of the catchments. Monitoring is funded by the Centre for Ecology & Hydrology, and is ongoing since 1968.Methods
Originally designed to improve understanding of water use by coniferous forests, monitoring within -
Abstract Channel planform patterns arise from internal dynamics of sediment transport and fluid flow in rivers and are affected by external controls such as valley confinement. Understanding whether these channel patterns are preserved in the rock record has critical implications for our ability to constrain past environmental conditions. Rivers are preserved as channel belts, which are one of the most ubiquitous and accessible parts of the sedimentary record, yet the relationship between river and channel-belt planform patterns remains unquantified. We analyzed planform patterns of rivers and channel belts from 30 systems globally. Channel patterns were classified using a graph theory-based metric, the Entropic Braided Index (eBI), which quantifies the number of river channels by considering the partitioning of water and sediment discharge. We find that, after normalizing by river size, channel-belt width and wavelength, amplitude, and curvature of the belt edges decrease with increasing river channel number (eBI). Active flow in single-channel rivers occupies as little as 1% of the channel belt, while in multichannel rivers it can occupy >50% of the channel belt. Moreover, we find that channel patterns lie along a continuum of channel numbers. Our findings have implications for studies on river and floodplain interaction, storage timescalesmore »