Composite wearable computers consist of multiple wearable devices connected together and working as a cohesive whole. These composite wearable computers are promising for augmenting our interaction with the physical, virtual, and mixed play spaces (e.g., mixed reality games). Yet little research has directly addressed how mixed reality system designers can select wearable input devices and how these devices can be assembled together to form a cohesive wearable computer. We present an initial taxonomy of wearable input devices to aid designers in deciding which devices to select and assemble together to support different mixed reality systems. We undertook a grounded theory analysis of 84 different wearable input devices resulting in a design taxonomy for composite wearable computers. The taxonomy consists of two axes: TYPE OF INTERACTIVITY and BODY LOCATION. These axes enable designers to identify which devices fill particular needs in the system development process and how these devices can be assembled together to form a cohesive wearable computer.
more »
« less
A Framework of Input Devices to Support Designing Composite Wearable Computers
Composite wearable computers combine multiple wearable devices to form a cohesive whole. Designing these complex systems and integrating devices to effectively leverage their affordances is nontrivial. To inform the design of composite wearable computers, we undertook a grounded theory analysis of 84 wearable input devices drawing from 197 data sources, including technical specifications, research papers, and instructional videos. The resulting prescriptive design framework consists of four axes: type of interactivity, associated output modalities, mobility, and body location. This framework informs a composition-based approach to the design of wearable computers, enabling designers to identify which devices fill particular user needs and design constraints. Using this framework, designers can understand the relationship between the wearable, the user, and the environment, identify limitations in available wearable devices, and gain insights into how to address design challenges developers will likely encounter.
more »
« less
- PAR ID:
- 10174270
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Volume:
- 12182
- ISSN:
- 1611-3349
- Page Range / eLocation ID:
- 401 - 427
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While normative – “good” – game design and user experiences have been established, we look to games that challenge those notions. Intentional frustration and failure can be worthwhile. Through a reflexive thematic analysis of 31 games we identify how intentionally non-normative design choices lead to meaningful experiences. Working within the established Mechanics Dynamics Aesthetics (MDA) Game Design Framework, we lay out themes to design Shitty User Experiences (SUX). We contribute SUX MDA themes for designers and researchers to counter the status quo and identify new forms of play and interaction.more » « less
-
Vibration is ubiquitous as a mode of haptic communication, and is used widely in handheld devices to convey events and notifications. The miniaturization of electromechanical actuators that are used to generate these vibrations has enabled designers to embed such actuators in wearable devices, conveying vibration at the wrist and other locations on the body. However, the rigid housings of these actuators mean that such wearables cannot be fully soft and compliant at the interface with the user. Fluidic textile-based wearables offer an alternative mechanism for haptic feedback in a fabric-like form factor. To our knowledge, fluidically driven vibrotactile feedback has not been demonstrated in a wearable device without the use of valves, which can only enable low-frequency vibration cues and detract from wearability due to their rigid structure. We introduce a soft vibrotactile wearable, made of textile and elastomer, capable of rendering high-frequency vibration. We describe our design and fabrication methods and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanical hysteresis. We demonstrate that the frequency and amplitude of vibration produced by our device can be varied based on changes in the input pressure, with 0.3 to 1.4 bar producing vibrations that range between 160 and 260 Hz at 13 to 38 g, the acceleration due to gravity. Our design allows for controllable vibrotactile feedback that is comparable in frequency and outperforms in amplitude relative to electromechanical actuators, yet has the compliance and conformity of fully soft wearable devices.more » « less
-
Wearable smart devices have become ubiquitous in modern society, extensively researched for their health monitoring capabilities and convenience features. However, the “wearability” of these devices remains a relatively understudied area, particularly in terms of design informed by clinical trials. Wearable devices possess significant potential to enhance daily life, yet their success depends on understanding and validating the design factors that influence comfort, usability, and seamless integration into everyday routines. This review aimed to evaluate the “wearability” of smart devices through a mixed-methods scoping literature review. By analyzing studies on comfort, usability, and daily integration, it sought to identify design improvements and research gaps to enhance user experience and system design. From an initial pool of 130 publications (1998–2024), 19 studies met the inclusion criteria. The review identified three significant outcomes: (1) a lack of standardized assessment methods, (2) the predominance of qualitative over quantitative assessments, and (3) limited utility of findings for informing design. Although qualitative studies provide valuable insights, the absence of quantitative research hampers the development of validated, generalizable design criteria. This underscores the urgent need for future studies to adopt robust quantitative methodologies to better assess wearability and inform evidence-based design strategies.more » « less
-
During the design process, designers must satisfy customer needs while adequately developing engineering objectives. Among these engineering objectives, human considerations such as user interactions, safety, and comfort are indispensable during the design process. Nevertheless, traditional design engineering methodologies have significant limitations incorporating and understanding physical user interactions during early design phases. For example, Human Factors methods use checklists and guidelines applied to virtual or physical prototypes at later design stages to evaluate the concept. As a result, designers struggle to identify design deficiencies and potential failure modes caused by user-system interactions without relying on the use of detailed and costly prototypes. The Function-Human Error Design Method (FHEDM) is a novel approach to assess physical interactions during the early design stage using a functional basis approach. By applying FHEDM, designers can identify user interactions required to complete the functions of the system and to distinguish failure modes associated with such interactions, by establishing user-system associations using the information of the functional model. In this paper, we explore the use of data mining techniques to develop relationships between component, functions, flows and user interactions. We extract design information about components, functions, flows, and user interactions from a set of distinct coffee makers found in the Design Repository to build associations rules. Later, using a functional model of an electric kettle, we compared the functions, flows, and user interactions associations generated from data mining against the associations created by the authors, using the FHEDM. The results show notable similarities between the associations built from data mining and the FHEDM. We are suggesting that design information from a rich dataset can be used to extract association rules between functions, flows, components, and user interactions. This work will contribute to the design community by automating the identification of user interactions from a functional model.more » « less
An official website of the United States government

