Studies reveal that the sea-surface temperature (SST) of the Northern Hemisphere decreased at a smaller amplitude than that of the Southern Hemisphere during the Eocene−Oligocene transition (EOT). This interhemispheric temperature asymmetry has been associated with intensified Atlantic Meridional Overturning Circulation (AMOC) that may have driven enhanced precipitation and weathering in low latitudes and the subsequent drawdown of atmospheric carbon dioxide. However, no quantitative constraints on paleo-precipitation have been reported in low latitudes to characterize the AMOC effect across the EOT. Here, we present the results of high-resolution (ca. 6 k.y. per sample) isotopic and biomarker records from the Gulf of Mexico. Reconstructed precipitation using leaf wax carbon isotopes shows an increase of 44% across the EOT (34.1−33.6 Ma), which is accompanied by a secular increase in SST of ∼2 °C during the latest Eocene. We attribute the enhanced precipitation in the Gulf of Mexico to the northward shift of the Intertropical Convergence Zone that was driven by an enlarged polar-tropic temperature gradient in the Southern Hemisphere and an invigorated AMOC. Our findings link changes in meridional temperature gradient and large-scale oceanic circulation to the low-latitude terrestrial hydroclimate and provide paleohydrological evidence that supports CO2-weathering feedback during the EOT “greenhouse” tomore »
A Tale of Two LIP- (Large-Igneous Province) Induced Hyperthermals: The end-Triassic extinction (ETE) and Toarcian OAE (T-OAE)
Although many sources of atmospheric CO2 have been identified, the major sinks are best understood in a deep-time context. Here, we focus on two Large Igneous Provinces (LIPs), the Central Atlantic Magmatic Province (CAMP) situated in the low latitude humid zone ~201.6 Ma and the Karoo-Ferrar located at high southern latitudes ~183 Ma. We use soil carbonate, lithologic, δD of n-alkanes, Sr data, and modeling to examine how these eruptions, hydrological cycling, and weathering impacted global atmospheric CO2, carbon cycling, and biotic extinction at the ETE and T-OAE hyperthermals.
CAMP largely erupted in the tropics, doubled atmospheric CO2 from ~2,500 – 5,000 ppm at the ETE (observed in soil carbonates with an onset <1000 and a duration of <~20 ky) and rapidly sequestered CO2 (< 2,500 ppm) as recorded in Newark Supergroup basins (eastern US). These same strata preserve variations in the lake level expression of the climatic precession cycle based on lithology and δD. High cyclicity variance tracked high pCO2 (>~4000 ppm) and drove insolation-paced increases in precipitation. Leaf wax δD shows significant variability, reflecting an enhanced hydrological cycle at the ETE with repeated sudden shifts in relative evaporation for ~1 Myr. In marine strata, 87Sr/86Sr and 187Os/188Os values track more »
- Award ID(s):
- 1654088
- Publication Date:
- NSF-PAR ID:
- 10174840
- Journal Name:
- American Geophysical Union Annual Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the modelmore »
-
As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rimmore »
-
Seasonal and spatial variability of CO2 in aquatic environments of the central lowland Amazon basin.Different sources and processes contribute to pCO2 and CO2 exchange with the atmosphere in the rivers and floodplains of the Amazon basin. We measured or estimated pCO2, CO2 fluxes with the atmosphere, planktonic community respiration (PCR), and environmental and landscape variables along the Negro and Amazon-Solimões rivers during different periods of the fluvial hydrological cycle. Values of pCO2 ranged from 307 to 7,527 μatm, while CO2 fluxes ranged from -9.3 to 1,128 mmol m-2 d-1 in the Amazon-Solimões basin. In the Negro basin, pCO2 values ranged from 648 to 6,526 μatm, and CO2 fluxes from 35 to 1,025 mmol m-2 d-1. In a general linear model including data from Negro and Amazon-Solimões basins, seasonal and spatial variation in flooded vegetated habitat area, dissolved oxygen, depth and water temperature explained 85% of surface pCO2 variation. Levels of pCO2 varied with inundation extent, with higher pCO2 values occurring in periods with greater water depth and inundation area, and lower dissolved oxygen concentrations and water temperatures. In a separate analysis for the Amazon-Solimões river and floodplains, ecosystem type (lotic or lentic), hydrological period, water temperature, dissolved oxygen, depth and dissolved phosphorus explained 83% of pCO2 variation. Our results demonstrate the influence of alluvialmore »
-
Beaufort, Luc (Ed.)Abstract. The evolution of the Cenozoic cryosphere from unipolar to bipolar over the past 30 million years (Myr) is broadly known. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere, and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264 (Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30 Myr). This constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and the carbon cycle: (1) strong ~110 kyr eccentricity pacing prevails during Oligocene–Miocene global warmth (~30–13 Ma), (2) increased eccentricity-modulated precession pacing appears after the middle Miocene ClimateTransition (mMCT) (~14–8 Ma), and (3) pervasive obliquity pacing appears in the late Miocene (~7.7–3.3 Ma) following greater importance of high-latitude processes, such as increased glacial activity and high-latitude cooling. The lowest CaCO3 content (92 %–94 %) occurs betweenmore »