skip to main content


Title: Comparison of Hafnium Dioxide and Zirconium Dioxide Grown by Plasma-Enhanced Atomic Layer Deposition for the Application of Electronic Materials
We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared.  more » « less
Award ID(s):
1740687
NSF-PAR ID:
10174874
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Crystals
Volume:
10
Issue:
2
ISSN:
2073-4352
Page Range / eLocation ID:
136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited Al2O3, ZrO2, and HfO2 nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported. The amorphous oxide nanolayers homogeneously deposited on the sample surfaces exhibited lower roughness after corrosion attack compared to the Ti(N,O)-coated stainless steel. The best corrosion resistance was obtained for the thickest oxide layers. All samples coated with thicker oxide nanolayers augmented the corrosion resistance of the Ti(N,O)-coated stainless steel in a saline, acidic, and oxidising environment (0.9% NaCl + 6% H2O2, pH = 4), which is of interest for building corrosion-resistant housings for advanced oxidation systems such as cavitation and plasma-related electrochemical dielectric barrier discharge for breaking down persistent organic pollutants in water. 
    more » « less
  2. Abstract

    New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.

     
    more » « less
  3. In this paper, carbon thin films were grown using the plasma-enhanced atomic layer deposition (PE-ALD). Methane (CH4) was used as the carbon precursor to grow the carbon thin film. The grown film was analyzed by the high-resolution transmission electron micrograph (TEM), X-ray photoelectron spectroscopy (XPS) analysis, and Raman spectrum analysis. The analyses show that the PE-ALD-grown carbon film has an amorphous structure. It was found that the existence of defective sites (nanoscale holes or cracks) on the substrate of copper foil could facilitate the formation of nanolayered carbon films. The mechanism for the formation of nanolayered carbon film in the nanoscale holes was discussed. This finding could be used for the controlled growth of nanolayered carbon films or other two-dimensional nanomaterials while combining with modern nanopatterning techniques. 
    more » « less
  4. Many biological lab-on-a-chip applications require electrical and optical manipulation as well as detection of cells and biomolecules. This provides an intriguing challenge to design robust microdevices that resist adverse electrochemical side reactions yet achieve optical transparency. Physical isolation of biological samples from microelectrodes can prevent contamination, electrode fouling, and electrochemical byproducts; thus this manuscript explores hafnium oxide (HfO2) films - originating from traditional transistor applications – for suitability in electrokinetic microfluidic devices for biological applications. HfO2 films with deposition times of 6.5, 13, and 20 min were sputter deposited onto silicon and glass substrates. The structural, optical, and electrical properties of the HfO2 films were investigated using atomic force microscopy (AFM), X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, ellipsometry, and capacitance voltage. Electric potential simulations of the HfO2 films and a biocompatibility study provided additional insights. Film grain size after corrosive Piranha treatment was observed via AFM. The crystalline structure investigated via X-ray diffraction revealed all films exhibited the (111) characteristic peak with thicker films exhibiting multiple peaks indicative of anisotropic structures. Energy dispersive X-ray spectroscopy via field emission scanning electron microscopy and Fourier transform infrared spectroscopy both corroborated the atomic ratio of the films as HfO2. Ellipsometry data from Si yielded thicknesses of 58, 127, and 239 nm and confirmed refractive index and extinction coefficients within the normal range for HfO2; glass data yielded unreliable thickness verifications due to film and substrate transparency. Capacitance-voltage results produced an average dielectric constant of 20.32, and the simulations showed that HfO2 dielectric characteristics were sufficient to electrically passivate planar microelectrodes. HfO2 biocompatibility was determined with human red blood cells by quantifying the hemolytic potential of the HfO2 films. Overall results support hafnium oxide as a viable passivation material for biological lab-on-a-chip applications. 
    more » « less
  5. null (Ed.)
    Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures. 
    more » « less