Abstract This study demonstrates the simultaneous achievement of high strength and excellent corrosion resistance in a Ni-free, high N austenitic stainless steel fabricated by laser powder bed fusion (PBF-LB). The formation of a single-phase austenitic structure was confirmed through X-ray diffraction analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic potentiodynamic polarization tests conducted in 0.6 M NaCl solution at room temperature revealed high breakdown potential (1187 ± 31 mVSCE), indicating excellent corrosion resistance for the additively manufactured Ni-free austenitic stainless steel compared to wrought 316L stainless steel. These findings were further supported by immersion tests in FeCl3solution. The additively fabricated alloy’s yield strength and ultimate tensile strength exceeded 800 MPa and 1 GPa, respectively. The results highlight the potential for developing highly corrosion-resistant, high-strength Ni-free austenitic stainless steel by PBF-LB for possible applications for biomedical implants and structures relating to nuclear energy.
more »
« less
Effects of Film Thickness of ALD-Deposited Al2O3, ZrO2 and HfO2 Nano-Layers on the Corrosion Resistance of Ti(N,O)-Coated Stainless Steel
The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited Al2O3, ZrO2, and HfO2 nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported. The amorphous oxide nanolayers homogeneously deposited on the sample surfaces exhibited lower roughness after corrosion attack compared to the Ti(N,O)-coated stainless steel. The best corrosion resistance was obtained for the thickest oxide layers. All samples coated with thicker oxide nanolayers augmented the corrosion resistance of the Ti(N,O)-coated stainless steel in a saline, acidic, and oxidising environment (0.9% NaCl + 6% H2O2, pH = 4), which is of interest for building corrosion-resistant housings for advanced oxidation systems such as cavitation and plasma-related electrochemical dielectric barrier discharge for breaking down persistent organic pollutants in water.
more »
« less
- Award ID(s):
- 2306177
- PAR ID:
- 10442353
- Date Published:
- Journal Name:
- Materials
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 2007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this study, a compact cold sprayed (CS) Ti coating was deposited on Mg alloy using a high pressure cold spray (HPCS) system. The wear and corrosion behavior of the CS Ti coating was compared with that of CS Al coating and bare Mg alloy. The Ti coating yielded lower wear rate compared to Al coating and Mg alloy. Electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) tests revealed that CS Ti coating can substantially reduce corrosion rate of AZ31B in chloride containing solutions compared to CS Al coating. Interestingly, Ti-coated Mg alloy demonstrated negative hysteresis loop, depicting repassivation of pits, in contrast to AZ31B and Al-coated AZ31B with positive hysteresis loops where corrosion potential (Ecorr) > repassivation potential (Erp); indicating irreversible growth of pits. AZ31B and Al-coated AZ31B were most susceptible to pitting corrosion, while Ti-coated Mg alloy indicated noticeable resistance to pitting in 3.5 wt % NaCl solution. In comparison to Al coating, Ti coating considerably separated the AZ31BMg alloy surface from the corrosive electrolyte during long term immersion test for 11 days.more » « less
-
Abstract This paper explores the production of an oxide dispersion strengthened (ODS) 304L stainless steel microchannel heat exchanger (HX) using a hybrid additive manufacturing process of laser powder bed fusion and inkjet printing. The study investigates the capabilities and economics of the hybrid inkjet-laser powder bed fusion (LPBF) process and evaluates the dimensional accuracy, functionality, and mechanical properties of the resulting ODS alloy. The effectiveness and pressure drop of the ODS heat exchangers produced by the hybrid LPBF tool are also determined. Results show that the inkjet-doped samples have a lower mean channel height with higher standard deviation than samples produced by LPBF alone. This is attributed to greater absorption of laser energy for the powder coated with the oxide precursor. The economic analysis shows that the hybrid process has a potential for reducing the unit cost of the heat exchanger based on cost modeling assumptions.more » « less
-
Limongelli, Maria Pina; Ng, Ching Tai; Glisic, Branko (Ed.)Civil engineering structures are routinely exposed to corrosive environments, posing threats to their structural integrity. Traditional corrosion control methods often involve employing physical barriers, such as various coatings, to isolate the steel substrate from surrounding electrolytes. Among these methods, thermal spraying of alloy coatings has emerged as a prominent technique in safeguarding steel matrices against corrosion, particularly in industrial and marine settings. However, the inherent porosity of thermal spraying coatings compromises their corrosion resistance. Incorporating a polymer top layer offers a promising solution by sealing pores and augmenting overall performance. This study investigates corrosion on duplex-coated steel utilizing distributed fiber optic sensors based on optical frequency domain reflectometry. Experimental analyses involve embedding serpentine-arranged distributed fiber optic strain sensors within both thermal spraying layers and epoxy layers. Results demonstrate the efficiency of distributed sensors in identifying corrosion propagation paths by measuring the induced strain changes. Furthermore, the duplex coating exhibits significant enhancements in corrosion resistance for steel structures.more » « less
-
Abstract The current study investigates electroless nickel plating and surface finishing techniques such as ChemPolishing (CP) and ElectroPolishing (EP) for postprocessing on additively manufactured stainless-steel samples. Existing additive manufacturing (AM) technologies generate metal components with a rough surface that typically exhibit fatigue characteristics, resulting in component failure and undesirable friction coefficients on the printed part. Small cracks formed in rough surfaces at high surface roughness regions act as a stress raiser or crack nucleation site. As a result, the direct use of as-produced parts is limited, and smoothening the Surface presents a challenge. Previous research has shown that CP ChemPolishing has a significant advantage in producing uniform, smooth surfaces regardless of size or part geometry. EP Electropolishing has a high material removal rate and an excellent surface finishing capability. Electropolishing, on the other hand, has some limitations in terms of uniformity and repeatability. On additively manufactured stainless-steel samples, electroless nickel deposition has a higher plating potential. Nickel has excellent wear resistance, and nickel-plated samples are more robust as scratch resistant than not plated samples when tested for scratch resistance. This research uses medium-phosphorus (6–9% P) and high-phosphorus (10–13% P). The L9 Taguchi design of experiments (DOE) was used to optimize the electroless nickel deposition experiments. The mechanical properties of as-built and nickel-coated additive manufacturing (AM) samples were investigated using a standard 5 N scratch test and the adhesion test ASTM B-733 thermal shock method. The KEYENCE Digital Microscope VHX-7000 was used to examine the pre- and post-processed surfaces of the AM parts. The complete scratch and Design of Experiment (DOE) analysis was performed using the Qualitek-4 software. This work is in progress concerning testing the optimum conditions, completing measurements, and analyzing the results.more » « less
An official website of the United States government

