skip to main content


Title: Effects of Film Thickness of ALD-Deposited Al2O3, ZrO2 and HfO2 Nano-Layers on the Corrosion Resistance of Ti(N,O)-Coated Stainless Steel
The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited Al2O3, ZrO2, and HfO2 nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported. The amorphous oxide nanolayers homogeneously deposited on the sample surfaces exhibited lower roughness after corrosion attack compared to the Ti(N,O)-coated stainless steel. The best corrosion resistance was obtained for the thickest oxide layers. All samples coated with thicker oxide nanolayers augmented the corrosion resistance of the Ti(N,O)-coated stainless steel in a saline, acidic, and oxidising environment (0.9% NaCl + 6% H2O2, pH = 4), which is of interest for building corrosion-resistant housings for advanced oxidation systems such as cavitation and plasma-related electrochemical dielectric barrier discharge for breaking down persistent organic pollutants in water.  more » « less
Award ID(s):
2306177
NSF-PAR ID:
10442353
Author(s) / Creator(s):
; ; ; ;  ; ; ; ;
Date Published:
Journal Name:
Materials
Volume:
16
Issue:
5
ISSN:
1996-1944
Page Range / eLocation ID:
2007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The bonding of ceramic to metal has been challenging due to the dissimilar nature of the materials, particularly different surface properties and the coefficients of thermal expansion (CTE). To address the issues, gas phase-processed thin metal films were inserted at the metal/ceramic interface to modify the ceramic surface and, therefore, promote heterogeneous bonding. In addition, an alloy bonder that is mechanically and chemically activated at as low as 220 °C with reactive metal elements was utilized to bond the metal and ceramic. Stainless steel (SS)/Zerodur is selected as the metal/ceramic bonding system where Zerodur is chosen due to the known low CTE. The low-temperature process and the low CTE of Zerodur are critical to minimizing the undesirable stress evolution at the bonded interface. Sputtered Ti, Sn, and Cu (300 nm) were deposited on the Zerodur surface, and then dually activated molten alloy bonders were spread on both surfaces of the coated Zerodur and SS at 220 °C in air. The shear stress of the bonding was tested with a custom-designed fixture in a universal testing machine and was recorded through a strain indicator. The mechanical strength and the bonded surface property were compared as a function of interfacial metal thin film and analyzed through thermodynamic interfacial stability/instability calculations. A maximum shear strength of bonding of 4.36 MPa was obtained with Cu interfacial layers, while that of Sn was 3.53 MPa and that of Ti was 3.42 MPa. These bonding strengths are significantly higher than those (∼0.04 MPa) of contacts without interfacial reactive thin metals.

     
    more » « less
  2. Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
    more » « less
  3. This study investigates the application of electroless nickel deposition on additively manufactured stainless steel samples. Current additive manufacturing (AM) technologies produce metal components with a rough surface. Rough surfaces generally exhibit fatigue characteristics, increasing the probability of initiating a crack or fracture to the printed part. For this reason, the direct use of as-produced parts in a finished product cannot be actualized, which presents a challenge. Post-processing of the AM parts is therefore required to smoothen the surface. This study analyzes chempolish (CP) and electropolish (EP) surface finishing techniques for post-processing AM stainless steel components CP has a great advantage in creating uniform, smooth surfaces regardless of size or part geometry EP creates an extremely smooth surface, which reduces the surface roughness to the sub-micrometer level.

    In this study, we also investigate nickel deposition on EP, CP, and as-built AM components using electroless nickel solutions. Electroless nickel plating is a method of alloy treatment designed to increase manufactured component’s hardness and surface resistance to the unrelenting environment. The electroless nickel plating process is more straightforward than its counterpart electroplating. We use low-phosphorus (2–5% P), medium-phosphorus (6–9% P), and high-phosphorus (10–13% P). These Ni deposition experiments were optimized using the L9 Taguchi design of experiments (TDOE), which compromises the prosperous content in the solution, surface finish, plane of the geometry, and bath temperature. The pre- and post-processed surface of the AM parts was characterized by KEYENCE Digital MicroscopeVHX-7000 and Phenom XL Desktop SEM. The experimental results show that electroless nickel deposition produces uniform Ni coating on the additively manufactured components up to 20 μm per hour. Mechanical properties of as-built and Ni coated AM samples were analyzed by applying a standard 10 N scratch test. Nickel coated AM samples were up to two times scratch resistant compared to the as-built samples. This study suggests electroless nickel plating is a robust viable option for surface hardening and finishing AM components for various applications and operating conditions. 

    more » « less
  4.  
    more » « less
  5. Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting. 
    more » « less