skip to main content


Title: WIP: Initial Investigation of Effective Teacher Professional Development Among Experienced and Non-experienced Engineering Teachers
The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide.  more » « less
Award ID(s):
1849430
NSF-PAR ID:
10175379
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference Experience
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  2. In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. The paper will describe the design and details of the initial implementation of the E4USA curriculum, focusing on the features that make this course suitable ‘for all.’ 
    more » « less
  3. null (Ed.)
    In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. 
    more » « less
  4. Efforts to provide pre-college students with engineering or engineering-related experiences are on the rise in the United States. These efforts are typically undertaken independently of one another and are often in competition to garner greater participation. e4usa+FIRST is a first-of-its-kind collaboration between two pre-college engineering/STEM education efforts that aims to break down existing silos between programs. The project was piloted in nine US high schools within underserved areas. The following study examines high school teacher’s preparedness to teach a blended offering between engineering and robotics curricula following a summer professional development (PD) program. Pilot teachers (n = 10) participated in focus groups to share their perceptions of readiness to implement the blended e4usa+FIRST curriculum. Data was analyzed using open coding and constant comparison methods. Most teachers reported confidence in teaching the blended offering, shared their plans and expectations, and brought up concerns regarding time and sustaining student interest especially during a time of pandemic. This project has implications for precollege engineering education efforts as it could provide a foundational understanding of how two successful programs can be blended, playing a critical role in educating high school students in underserved communities to experience engineering. 
    more » « less
  5. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less