skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Astrometric requirements for strong lensing time-delay cosmography
ABSTRACT The time-delay between the arrival of photons of multiple images of time-variable sources can be used to constrain absolute distances in the Universe, and in turn obtain a direct estimate of the Hubble constant and other cosmological parameters. To convert the time-delay into distances, it is well known that the gravitational potential of the main deflector and the contribution of the matter along the line of sight need to be known to a sufficient level of precision. In this paper, we discuss a new astrometric requirement that is becoming important, as time-delay cosmography improves in precision and accuracy with larger samples, and better data and modelling techniques. We derive an analytic expression for the propagation of astrometric uncertainties on the multiple image positions into the inference of the Hubble constant and derive requirements depending on image separation and relative time-delay. We note that this requirement applies equally to the image position measurements and to the accuracy of the model in reproducing them. To illustrate the requirement, we discuss some example lensing configurations and highlight that, especially for time-delays of order 10 d or shorter, the relative astrometric requirement is of order milliarcseconds, setting a tight requirement on both measurements and models. With current optical infrared technology, astrometric uncertainties may be the dominant limitation for strong lensing cosmography in the small image-separation regime when high-precision time-delays become accessible.  more » « less
Award ID(s):
1906976
PAR ID:
10175662
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
489
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2097 to 2103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Astrometric precision and knowledge of the point spread function are key ingredients for a wide range of astrophysical studies including time-delay cosmography in which strongly lensed quasar systems are used to determine the Hubble constant and other cosmological parameters. Astrometric uncertainty on the positions of the multiply-imaged point sources contributes to the overall uncertainty in inferred distances and therefore the Hubble constant. Similarly, knowledge of the wings of the point spread function is necessary to disentangle light from the background sources and the foreground deflector. We analyse adaptive optics (AO) images of the strong lens system J 0659+1629 obtained with the W. M. Keck Observatory using the laser guide star AO system. We show that by using a reconstructed point spread function we can (i) obtain astrometric precision of <1 mas, which is more than sufficient for time-delay cosmography; and (ii) subtract all point-like images resulting in residuals consistent with the noise level. The method we have developed is not limited to strong lensing, and is generally applicable to a wide range of scientific cases that have multiple point sources nearby. 
    more » « less
  2. Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H 0 . The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H 0 . We base the mock lenses on six quadruply imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H 0 . However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H 0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses. 
    more » « less
  3. Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H0. The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing realistic mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H0. We base the mock lenses on six quadruply-imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H0. However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.6−2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and sets a precision limit on inferences from single lenses. 
    more » « less
  4. null (Ed.)
    Strong lensing time delays can measure the Hubble constant H 0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H 0 from the cosmic microwave background. However, without assumptions on the radial mass density profile – and relying exclusively on stellar kinematics to break the mass-sheet degeneracy – the precision drops to 8% with the current data obtained using the seven TDCOSMO lenses, which is insufficient to resolve the H 0 tension. With the addition of external information from 33 Sloan Lens ACS (SLACS) lenses, the precision improves to 5% if the deflectors of TDCOSMO and SLACS lenses are drawn from the same population. We investigate the prospect of improving the precision of time-delay cosmography without relying on mass profile assumptions to break the mass-sheet degeneracy. Our forecasts are based on a previously published hierarchical framework. With existing samples and technology, 3.3% precision on H 0 can be reached by adding spatially resolved kinematics of the seven TDCOSMO lenses. The precision improves to 2.5% with the further addition of kinematics for 50 nontime-delay lenses from SLACS and the Strong Lensing Legacy Survey. Expanding the samples to 40 time-delay and 200 nontime-delay lenses will improve the precision to 1.5% and 1.2%, respectively. Time-delay cosmography can reach sufficient precision to resolve the Hubble tension at 3–5 σ , without assumptions on the radial mass profile of lens galaxies. By obtaining this precision with and without external datasets, we will test the consistency of the samples and enable further improvements based on even larger future samples of time-delay and nontime-delay lenses (e.g., from the Rubin , Euclid , and Roman Observatories). 
    more » « less
  5. null (Ed.)
    Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and hence measuring the Hubble constant, H 0 , independent of traditional distance ladder methodology. A current potential limitation of time-delay distance measurements is the mass-sheet transformation (MST), which leaves the lensed imaging unchanged but changes the distance measurements and the derived value of H 0 . In this work we show that the standard method of addressing the MST in time-delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the lensing galaxy, depends on the assumption that the ratio, D s / D ds , of angular diameter distances to the background quasar and between the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived H 0 under the assumption of the ΛCDM model. In this paper we show that the mass-sheet degeneracy can be broken without relying on a specific cosmological model by combining lensing with relative distance indicators such as supernovae Type Ia and baryon acoustic oscillations, which constrain the shape of the expansion history and hence D s / D ds . With this approach, we demonstrate that the mass-sheet degeneracy can be constrained in a cosmological model-independent way. Hence model-independent distance measurements in time-delay cosmography under MSTs can be obtained. 
    more » « less