skip to main content


Title: External optimal control of fractional parabolic PDEs
In [Antil et al. Inverse Probl. 35 (2019) 084003.] we introduced a new notion of optimal control and source identification (inverse) problems where we allow the control/source to be outside the domain where the fractional elliptic PDE is fulfilled. The current work extends this previous work to the parabolic case. Several new mathematical tools have been developed to handle the parabolic problem. We tackle the Dirichlet, Neumann and Robin cases. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the control/source either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control/source in the exterior. We introduce the notions of weak and very-weak solutions to the fractional parabolic Dirichlet problem. We present an approach on how to approximate the fractional parabolic Dirichlet solutions by the fractional parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.  more » « less
Award ID(s):
1818772
NSF-PAR ID:
10175693
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ESAIM: Control, Optimisation and Calculus of Variations
Volume:
26
ISSN:
1292-8119
Page Range / eLocation ID:
20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spatiotemporal fractional‐derivative models (FDMs) have been increasingly used to simulate non‐Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one‐dimensional fractional diffusion. Both the zero‐value and nonzero‐value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann‐Liouville fractional derivative (capturing nonzero‐value spatial‐nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional‐diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle‐tracking algorithm for non‐Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero‐value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random‐walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

     
    more » « less
  2. Abstract

    We consider the mapping properties of the integral operator arising in nonlocal slender body theory (SBT) for the model geometry of a straight, periodic filament. It is well known that the classical singular SBT integral operator suffers from high wavenumber instabilities, making it unsuitable for approximating theslender body inverse problem, where the fiber velocity is prescribed and the integral operator must be inverted to find the force density along the fiber. Regularizations of the integral operator must therefore be used instead. Here, we consider two regularization methods: spectral truncation and the‐regularization of Tornberg and Shelley (2004). We compare the mapping properties of these approximations to the underlying partial differential equation (PDE) solution, which for the inverse problem is simply the Stokes Dirichlet problem with data constrained to be constant on cross sections. For the straight‐but‐periodic fiber with constant radius, we explicitly calculate the spectrum of the operator mapping fiber velocity to force for both the PDE and the approximations. We prove that the spectrum of the original SBT operator agrees closely with the PDE operator at low wavenumbers but differs at high frequencies, allowing us to define a truncated approximation with a wavenumber cutoff. For both the truncated and‐regularized approximations, we obtain rigorous‐based convergence to the PDE solution as: A fiber velocity withregularity givesconvergence, while a fiber velocity with at leastregularity yieldsconvergence. Moreover, we determine the dependence of the‐regularized error estimate on the regularization parameter.

     
    more » « less
  3. Trélat, E. ; Zuazua, E. (Ed.)
    This chapter provides a brief review of recent developments on two nonlocal operators: fractional Laplacian and fractional time derivative. We start by accounting for several applications of these operators in imaging science, geophysics, harmonic maps, and deep (machine) learning. Various notions of solutions to linear fractional elliptic equations are provided and numerical schemes for fractional Laplacian and fractional time derivative are discussed. Special emphasis is given to exterior optimal control problems with a linear elliptic equation as constraints. In addition, optimal control problems with interior control and state constraints are considered. We also provide a discussion on fractional deep neural networks, which is shown to be a minimization problem with fractional in time ordinary differential equation as constraint. The paper concludes with a discussion on several open problems. 
    more » « less
  4. We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear nonlocal integro-differential equations. The leading operator exhibits nonuniform growth, switching between two different fractional elliptic "phases" that are determined by the zero set of a modulating coefficient. Solutions are shown to improve both in integrability and differentiability. These results apply to operators with rough kernels and modulating coefficients. To obtain these results we adapt a particular fractional version of the Gehring lemma developed by Kuusi, Mingione, and Sire in their work "Nonlocal self-improving properties" Analysis & PDE, 8(1):57–114 for the specific nonlinear setting under investigation in this manuscript.

     
    more » « less
  5. The physics-informed neural networks (PINNs) has been widely utilized to numerically approximate PDE problems. While PINNs has achieved good results in producing solutions for many partial differential equations, studies have shown that it does not perform well on phase field models. In this paper, we partially address this issue by introducing a modified physics-informed neural networks. In particular, they are used to numerically approximate Allen- Cahn-Ohta-Kawasaki (ACOK) equation with a volume constraint. Technically, the inverse of Laplacian in the ACOK model presents many challenges to the baseline PINNs. To take the zero- mean condition of the inverse of Laplacian, as well as the volume constraint, into consideration, we also introduce a separate neural network, which takes the second set of sampling points in the approximation process. Numerical results are shown to demonstrate the effectiveness of the modified PINNs. An additional benefit of this research is that the modified PINNs can also be applied to learn more general nonlocal phase-field models, even with an unknown nonlocal kernel. 
    more » « less