skip to main content

Title: Optimal Control, Numerics, and Applications of Fractional PDEs
This chapter provides a brief review of recent developments on two nonlocal operators: fractional Laplacian and fractional time derivative. We start by accounting for several applications of these operators in imaging science, geophysics, harmonic maps, and deep (machine) learning. Various notions of solutions to linear fractional elliptic equations are provided and numerical schemes for fractional Laplacian and fractional time derivative are discussed. Special emphasis is given to exterior optimal control problems with a linear elliptic equation as constraints. In addition, optimal control problems with interior control and state constraints are considered. We also provide a discussion on fractional deep neural networks, which is shown to be a minimization problem with fractional in time ordinary differential equation as constraint. The paper concludes with a discussion on several open problems.
; ; ; ; ;
Trélat, E.; Zuazua, E.
Award ID(s):
2110263 1913004
Publication Date:
Journal Name:
Handbook of numerical analysis
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Some linear integro-differential operators have old and classical representations as the Dirichlet-to-Neumann operators for linear elliptic equations, such as the 1/2-Laplacian or the generator of the boundary process of a reflected diffusion. In this work, we make some extensions of this theory to the case of a nonlinear Dirichlet-to-Neumann mapping that is constructed using a solution to a fully nonlinear elliptic equation in a given domain, mapping Dirichlet data to its normal derivative of the resulting solution. Here we begin the process of giving detailed information about the Lévy measures that will result from the integro-differential representation of the Dirichlet-to-Neumann mapping. We provide new results about both linear and nonlinear Dirichlet-to-Neumann mappings. Information about the Lévy measures is important if one hopes to use recent advancements of the integro-differential theory to study problems involving Dirichlet-to-Neumann mappings.
  2. In this paper, we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2 s with s ∈ (0, 1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions.
  3. Abstract We consider an evolution equation involving the fractional powers, of order s ∈ (0, 1), of a symmetric and uniformly elliptic second order operator and Caputo fractional time derivative of order γ ∈ (1, 2]. Since it has been shown useful for the design of numerical techniques for related problems, we also consider a quasi–stationary elliptic problem that comes from the realization of the spatial fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi–infinite cylinder. We provide existence and uniqueness results together with energy estimates for both problems. In addition, we derive regularity estimates both in time and space; the time–regularity results show that the usual assumptions made in the numerical analysis literature are problematic.
  4. Abstract

    This paper is mainly concerned with a controlled multi-term fractional evolution equation in Banach spaces. Firstly, we give formula of its mild solutions and show the existence result for the problem via $\omega $-sectorial operator technique. Secondly, we establish the Lagrange optimal control and time optimal control for the system invoked by the nonlocal Cauchy problems of multi-term fractional evolution equation by properties of resolvent operators.

  5. In [Antil et al. Inverse Probl. 35 (2019) 084003.] we introduced a new notion of optimal control and source identification (inverse) problems where we allow the control/source to be outside the domain where the fractional elliptic PDE is fulfilled. The current work extends this previous work to the parabolic case. Several new mathematical tools have been developed to handle the parabolic problem. We tackle the Dirichlet, Neumann and Robin cases. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the control/source either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control/source in the exterior. We introduce the notions of weak and very-weak solutions to the fractional parabolic Dirichlet problem. We present an approach on how to approximate the fractional parabolic Dirichlet solutions by the fractional parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.