skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forward and inverse homogenization of the electromagnetic properties of a quasiperiodic composite
The paper deals with forward and inverse homogenization of Maxwell's equations with a geometry on a microscopic scale given by a quasiperiodic distribution of piece-wise constant components defined by the use of a mapping R : ℝ n → ℝ m , m > n, and a periodic unit cell in ℝ m . Inverse homogenization makes use of a Stieltjes analytic representation for the effective complex permittivity, which depends upon R, unlike for the periodic case.  more » « less
Award ID(s):
1715680
PAR ID:
10175976
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 URSI International Symposium on Electromagnetic Theory (EMTS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We adapt the multiple scale method introduced over 40 years ago for the homogenization of periodic structures [1], to the quasiperiodic (cut-and-projection) setting. We make use of partial differential operators (gradient, divergence and curl) acting on periodic functions of m variables in a higher-dimensional space that are projected onto operators acting on quasiperiodic functions in the n-dimensional physical space (m>n). We replace heterogeneous quasiperiodic structures, coined irrational metamaterials in [2], by homogeneous media with anisotropic permittivity and permeability tensors, obtained from the solution of annex problems of electrostatic type in a periodic cell in higher dimensional space. This approach is valid when the wavelength is much larger than the period of the higher dimensional elementary cell. 
    more » « less
  2. null (Ed.)
    Let ϕ : S 2 → S 2 \phi :S^2 \to S^2 be an orientation-preserving branched covering whose post-critical set has finite cardinality n n . If ϕ \phi has a fully ramified periodic point p ∞ p_{\infty } and satisfies certain additional conditions, then, by work of Koch, ϕ \phi induces a meromorphic self-map R ϕ R_{\phi } on the moduli space M 0 , n \mathcal {M}_{0,n} ; R ϕ R_{\phi } descends from Thurston’s pullback map on Teichmüller space. Here, we relate the dynamics of R ϕ R_{\phi } on M 0 , n \mathcal {M}_{0,n} to the dynamics of ϕ \phi on S 2 S^2 . Let ℓ \ell be the length of the periodic cycle in which the fully ramified point p ∞ p_{\infty } lies; we show that R ϕ R_{\phi } is algebraically stable on the heavy-light Hassett space corresponding to ℓ \ell heavy marked points and ( n − ℓ ) (n-\ell ) light points. 
    more » « less
  3. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Let X be a set of points in ℝ² and 𝒪 be a set of geometric objects in ℝ², where |X| + |𝒪| = n. We study the problem of computing a minimum subset 𝒪^* ⊆ 𝒪 that encloses all points in X. Here a point x ∈ X is enclosed by 𝒪^* if it lies in a bounded connected component of ℝ²∖(⋃_{O ∈ 𝒪^*} O). We propose two algorithmic frameworks to design polynomial-time approximation algorithms for the problem. The first framework is based on sparsification and min-cut, which results in O(1)-approximation algorithms for unit disks, unit squares, etc. The second framework is based on LP rounding, which results in an O(α(n)log n)-approximation algorithm for segments, where α(n) is the inverse Ackermann function, and an O(log n)-approximation algorithm for disks. 
    more » « less
  4. We study the large-scale behavior of Newton-Sobolev functions on complete, connected, proper, separable metric measure spaces equipped with a Borel measure μ with μ(X) = ∞ and 0 < μ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞). Our objective is to understand the relationship between the Dirichlet space D^(1,p)(X), defined using upper gradients, and the Newton-Sobolev space N^(1,p)(X)+ℝ, for 1 ≤ p < ∞. We show that when X is of uniformly locally p-controlled geometry, these two spaces do not coincide under a wide variety of geometric and potential theoretic conditions. We also show that when the metric measure space is the standard hyperbolic space ℍⁿ with n ≥ 2, these two spaces coincide precisely when 1 ≤ p ≤ n-1. We also provide additional characterizations of when a function in D^(1,p)(X) is in N^(1,p)(X)+ℝ in the case that the two spaces do not coincide. 
    more » « less
  5. Meka, Raghu (Ed.)
    In the d-dimensional turnstile streaming model, a frequency vector 𝐱 = (𝐱(1),…,𝐱(n)) ∈ (ℝ^d)ⁿ is updated entry-wisely over a stream. We consider the problem of f-moment estimation for which one wants to estimate f(𝐱)=∑_{v ∈ [n]}f(𝐱(v)) with a small-space sketch. A function f is tractable if the f-moment can be estimated to within a constant factor using polylog(n) space. The f-moment estimation problem has been intensively studied in the d = 1 case. Flajolet and Martin estimate the F₀-moment (f(x) = 1 (x > 0), incremental stream); Alon, Matias, and Szegedy estimate the L₂-moment (f(x) = x²); Indyk estimates the L_α-moment (f(x) = |x|^α), α ∈ (0,2]. For d ≥ 2, Ganguly, Bansal, and Dube estimate the L_{p,q} hybrid moment (f:ℝ^d → ℝ,f(x) = (∑_{j = 1}^d |x_j|^p)^q), p ∈ (0,2],q ∈ (0,1). For tractability, Bar-Yossef, Jayram, Kumar, and Sivakumar show that f(x) = |x|^α is not tractable for α > 2. Braverman, Chestnut, Woodruff, and Yang characterize the class of tractable one-variable functions except for a class of nearly periodic functions. In this work we present a simple and generic scheme to construct sketches with the novel idea of hashing indices to Lévy processes, from which one can estimate the f-moment f(𝐱) where f is the characteristic exponent of the Lévy process. The fundamental Lévy-Khintchine representation theorem completely characterizes the space of all possible characteristic exponents, which in turn characterizes the set of f-moments that can be estimated by this generic scheme. The new scheme has strong explanatory power. It unifies the construction of many existing sketches (F₀, L₀, L₂, L_α, L_{p,q}, etc.) and it implies the tractability of many nearly periodic functions that were previously unclassified. Furthermore, the scheme can be conveniently generalized to multidimensional cases (d ≥ 2) by considering multidimensional Lévy processes and can be further generalized to estimate heterogeneous moments by projecting different indices with different Lévy processes. We conjecture that the set of tractable functions can be characterized using the Lévy-Khintchine representation theorem via what we called the Fourier-Hahn-Lévy method. 
    more » « less