This paper proposes a user scheduling and power allocation method for content delivery in wireless caching helper networks without any stringent constraint on the interference model. For supporting delay-sensitive and time-varying user demands, the actual delivery quantity of the requested content should be dynamically controlled by advanced scheduling and power allocation. In addition, it is difficult for a central unit to control the content delivery due to a lack of knowledge of the entire time-varying network; therefore, a belief-propagation (BP)-based algorithm that facilitates distributed decisions on user scheduling and power allocation at every caching helper is presented. The proposed delivery scheme maximizes power efficiency while limiting the average delay of user request satisfactions by managing interference among users well. Simulation results show that the proposed scheme provides almost the same delay performance as the exhaustively found optimal one at the expense of little power consumption.
more »
« less
Cache Allocations for Consecutive Requests of Categorized Contents: Service Provider’s Perspective
In wireless caching networks, a user generally has a concrete purpose of consuming contents in a certain preferred category, and requests multiple contents in sequence. While most existing research on wireless caching and delivery has focused only on one-shot requests, the popularity distribution of contents requested consecutively is definitely different from the one-shot request and has been not considered. Also, especially from the perspective of the service provider, it is advantageous for users to consume as many contents as possible. Thus, this paper proposes two cache allocation policies for categorized contents and consecutive user demands, which maximize 1) the cache hit rate and 2) the number of consecutive content consumption, respectively. Numerical results show how categorized contents and consecutive content requests have impacts on the cache allocation.
more »
« less
- PAR ID:
- 10176177
- Date Published:
- Journal Name:
- 2020 IEEE Wireless Communications and Networking Conference (WCNC)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In virtual machine (VM) allocation systems, caching repetitive and similar VM allocation requests and associated resolution rules is crucial for reducing computational costs and meeting strict latency requirements. While modern allocation systems distribute requests among multiple allocator agents and use caching to improve performance, current schedulers often neglect the cache state and latency considerations when assigning each new request to an agent. Due to the high variance in costs of cache hits and misses and the associated processing overheads of updating the caches, simple load-balancing and cache-aware mechanisms result in high latencies. We introduce Kamino, a high-performance, latencydriven and cache-aware request scheduling system aimed at minimizing end-to-end latencies. Kamino employs a novel scheduling algorithm grounded in theory which uses partial indicators from the cache state to assign each new request to the agent with the lowest estimated latency. Evaluation of Kamino using a high-fidelity simulator on large-scale production workloads shows a 42% reduction in average request latencies. Our deployment of Kamino in the control plane of a large public cloud confirms these improvements, with a 33% decrease in cache miss rates and a 17% reduction in memory usagemore » « less
-
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.more » « less
-
Content delivery networks (CDNs) cache and serve a majority of the user-requested content on the Internet. Designing caching algorithms that automatically adapt to the heterogeneity, burstiness, and non-stationary nature of real-world content requests is a major challenge and is the focus of our work. While there is much work on caching algorithms for stationary request traffic, the work on non-stationary request traffic is very limited. Consequently, most prior models are inaccurate for non-stationary production CDN traffic. We propose two TTL-based caching algorithms that provide provable performance guarantees for request traffic that is bursty and nonstationary. The first algorithm called d-TTL dynamically adapts a TTL parameter using stochastic approximation. Given a feasible target hit rate, we show that d-TTL converges to its target value for a general class of bursty traffic that allows Markov dependence over time and non-stationary arrivals. The second algorithm called f-TTL uses two caches, each with its own TTL. The first-level cache adaptively filters out non-stationary traffic, while the second-level cache stores frequently-accessed stationary traffic. Given feasible targets for both the hit rate and the expected cache size, f-TTL asymptotically achieves both targets. We evaluate both d-TTL and f-TTL using an extensive trace containing more than 500 million requests from a production CDN server. We show that both d-TTL and f-TTL converge to their hit rate targets with an error of about 1.3%. But, f-TTL requires a significantly smaller cache size than d-TTL to achieve the same hit rate, since it effectively filters out non-stationary content.more » « less
-
Content delivery networks (CDNs) distribute much of today's Internet traffic by caching and serving users' contents requested. A major goal of a CDN is to improve hit probabilities of its caches, thereby reducing WAN traffic and user-perceived latency. In this paper, we develop a new approach for caching in CDNs that learns from optimal caching for decision making. To attain this goal, we first propose HRO to compute the upper bound on optimal caching in an online manner, and then leverage HRO to inform future content admission and eviction. We call this new cache design LHR. We show that LHR is efficient since it includes a detection mechanism for model update, an auto-tuned threshold-based model for content admission with a simple eviction rule. We have implemented an LHR simulator as well as a prototype within an Apache Traffic Server and the Caffeine, respectively. Our experimental results using four production CDN traces show that LHR consistently outperforms state of the arts with an increase in hit probability of up to 9% and a reduction in WAN traffic of up to 15% compared to a typical production CDN cache. Our evaluation of the LHR prototype shows that it only imposes a moderate overhead and can be deployed on today's CDN servers.more » « less
An official website of the United States government

