Recent investigations showed that cache-aided device-to-device (D2D) networks can be improved by properly exploiting the individual preferences of users. Since in practice it might be difficult to make centralized decisions about the caching distributions, this paper investigates the individual preference aware caching policy that can be implemented distributedly by users without coordination. The proposed policy is based on categorizing different users into different reference groups associated with different caching policies according to their preferences. To construct reference groups, learning-based approaches are used. To design caching policies that maximize throughput and hit-rate, optimization problems are formulated and solved. Numerical results based on measured individual preferences show that our design is effective and exploiting individual preferences is beneficial.
more »
« less
Individual Preference Aware Caching Policy Design in Wireless D2D Networks
Cache-aided wireless device-to-device (D2D) networks allow significant throughput increase, depending on the concentration of the popularity distribution of files. Many studies assume that all users have the same preference distribution; however, this may not be true in practice. This work investigates whether and how the information about individual preferences can benefit cache-aided D2D networks. We examine a clustered network and derive a network utility that considers both the user distribution and channel fading effects into the analysis. We also formulate a utility maximization problem for designing caching policies. This maximization problem can be applied to optimize several important quantities, including throughput, energy efficiency (EE), cost, and hit-rate, and to solve different tradeoff problems. We provide a general approach that can solve the proposed problem under the assumption that users coordinate, then prove that the proposed approach can obtain the stationary point under a mild assumption. Using simulations of practical setups, we show that performance can improve significantly with proper exploitation of individual preferences. We also show that different types of tradeoffs exist between different performance metrics and that they can be managed through caching policy and cooperation distance designs.
more »
« less
- PAR ID:
- 10176184
- Date Published:
- Journal Name:
- IEEE Transactions on Wireless Communications
- ISSN:
- 1536-1276
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Caching of video files on user devices, combined with file exchange through device-to-device (D2D) communications is a promising method for increasing the throughput of wireless networks. Previous theoretical investigations showed that throughput can be increased by orders of magnitude, but assumed a Zipf distribution for modeling the popularity distribution, which was based on observations in wired networks. Thus the question whether cache-aided D2D video distribution can provide in practice the benefits promised by existing theoretical literature remains open. To answer this question, we provide new results specifically for popularity distributions of video requests of mobile users. Based on an extensive real-world dataset, we adopt a generalized distribution, known as Mandelbrot-Zipf (MZipf) distribution. We first show that this popularity distribution can fit the practical data well. Using this distribution, we analyze the throughput–outage tradeoff of the cache-aided D2D network and show that the scaling law is identical to the case of Zipf popularity distribution when the MZipf distribution is sufficiently skewed, implying that the benefits previously promised in the literature could indeed be realized in practice. To support the theory, practical evaluations using numerical experiments are provided, and show that the cache-aided D2D can outperform the conventional unicasting from base stations.more » « less
-
Abstract—Due to the concentrated popularity distribution of video files, caching of popular files on devices, and distributing them via device-to-device (D2D) communications allows a dramatic increase in the throughput of wireless video networks. However, since the popularity distribution is not static and the caching policy might be outdated, there is a need for replacement of cache content. In this work, by exploiting the broadcasting of the base station (BS), we model the caching content replacement in BS assisted wireless D2D caching networks and propose a practically realizable replacement procedure. Subsequently, by introducing a queuing system, the replacement problem is formulated as a sequential decision making problem, in which the long term average service rate is optimized under average cost constraint and queue stability. We propose a replacement design using Lyapunov optimization, which effectively solves the problem and makes decisions. Using simulations, we evaluate the proposed design. The results clearly indicate that, when dynamics exist, the systems exploiting replacement can significantly outperform the systems using merely the static policy.more » « less
-
Joint device-to-device (D2D) and cellular communication is a promising technology for enhancing the spectral efficiency of future wireless networks. However, the interference management problem is challenging since the operating devices and the cellular users share the same spectrum. The emerging reconfigurable intelligent surfaces (RIS) technology is a potentially ideal solution for this interference problem since RISs can shape the wireless channel in desired ways. This paper considers an RIS-aided joint D2D and cellular communication system where the RIS is exploited to cancel interference to the D2D links and maximize the minimum signal-to-interference plus noise (SINR) of the device pairs and cellular users. First, we adopt a popular alternating optimization (AO) approach to solve the minimum SINR maximization problem. Then, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. We derive a representation for the RIS phase shift vector which cancels the interference to the D2D links. Based on this representation, the RIS phase shift optimization problem is transformed into an effective D2D channel optimization. We show that the AO approach can converge faster and can even give better performance when it is initialized by the proposed IC solution. We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the single receive device.more » « less
-
This paper considers cache-aided device-to-device (D2D) networks where a trusted server helps to preserve the privacy of the users’ demands. Specifically, the trusted server collects the users’ demands before the delivery phase and sends a query to each user, who then broadcasts multicast packets according to this query. Recently the Authors proposed a D2D private caching scheme that was shown to be order optimal except for the very low memory size regime, where the optimality was proved by comparing to a converse bound without privacy constraint. The main contribution of this paper is a novel converse bound for the studied model where users may collude (i.e., some users share cache contents and demanded files, and yet cannot infer what files the remaining users have demanded) and under the placement phase is uncoded. To the best of the Author’s knowledge, such a general bound is the first that genuinely accounts for the demand privacy constraint. The novel converse bound not only allows to show that the known achievable scheme is order optimal in all cache size regimes (while the existing converse bounds cannot show it), but also has the potential to be used in other variants of demand private caching.more » « less
An official website of the United States government

