Physics departments are increasingly working to improve diversity in graduate programs by using more holistic strategies in their admission and retention practices. However, completion rates for traditionally underserved groups are still problematic. By understanding and accounting for faculty and student divergence on challenges faced in retention, graduate programs will be better equipped to enact change. In this study of two graduate programs (one physics and the other astrophysics), faculty and graduate students were asked why graduate students leave their program, and to identify ways to reduce attrition. While the goal of improving retention was shared between faculty and graduate students, their visions for how retention could be improved were not aligned. Faculty believed that retention could be improved by reforming admissions practices to select for students with attributes critical for success in graduate school, such as resilience. In contrast, the graduate students noted more systemic or socio-cultural factors as impacting retention.
more »
« less
Identifying qualities of physics graduate students valued by faculty
Faculty members involved in graduate admissions decisions have to determine who will be offered admissions to their respective graduate programs. In this study, we interviewed faculty at four institutions who currently serve or have served on their program's graduate admissions committee. The focus of this study was twofold: first, to explore what qualities faculty value in graduate students and second, to identify what sources of evidence faculty utilize in determining if a student possesses a desired quality. Results from these interviews showed that while qualities such as content knowledge and programming skills were valued, non-cognitive qualities such as self-motivation, resilience, and self-learning were also highly desired. The faculty noted that while current admissions practices can easily identify if a student has taken certain coursework, they typically lack the means to quickly assess non-cognitive qualities, which must often be inferred from the contents of personal statements and letters of recommendation. These results suggest that transparency on the part of graduate programs to better advertise the qualities they desire will assist letter writers and students writing personal statements to increase the impact of their application materials.
more »
« less
- Award ID(s):
- 1633275
- PAR ID:
- 10176392
- Date Published:
- Journal Name:
- Physics Education Research Conference 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low-income students are underrepresented in engineering and are more likely to struggle in engineering programs. Such students may be academically talented and perform well in high school, but may have relatively weak academic preparation for college compared to students who attended better-resourced schools. Four-year engineering and computer science curricula are designed for students who are calculus-ready, but many students who are eager to become engineers or computer scientists need additional time and support to succeed. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 as a collaborative effort to build on the success of three existing “academic redshirt” programs and expand the model to three new schools. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to promising engineering students from low-income backgrounds. The goal of the program is to enhance the students’ ability to successfully graduate with engineering or computer science degrees. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, providing a variety of models for how an extra preparatory year or other intensive academic preparatory programs can be accommodated. This paper will pay particular attention to the ways that institutional context shapes the implementation of the redshirt model. For instance, what do the redshirt admissions and selection processes look like at schools with direct-to-college admissions versus schools with post-general education admissions? What substantive elements of the first-year curriculum are consistent across the consortium? Where variation in curriculum occurs, what are the institutional factors that produce this variation? How does the redshirt program fit with other pre-existing academic support services on campus, and what impact does this have on the redshirt program’s areas of focus? Program elements covered include first-year curricula, pre-matriculation summer programs, academic advising and support services, admissions and selection processes, and financial aid. Ongoing assessment efforts and research designed to investigate how the various redshirt models influence faculty and student experiences will be described.more » « less
-
This Innovative Practice paper describes the Local Research Experiences for Undergraduates (LREU) program that was established by the Computing Alliance of Hispanic-Serving Institutions (CAHSI) at Hispanic-serving institutions (HSIs) in 2021 to increase the number of students, particularly students from underrepresented populations, who enter graduate programs in computer science. Since its first offering in Spring 2022, the LREU program has involved 182 faculty and 253 students. The LREU program funds undergraduate research experiences at the students’ home institutions with an emphasis on first-generation students and those with financial needs. The motivation for the program is to address the low number of domestic students, particularly Hispanics and other minoritized populations, who seek and complete graduate degrees. Research shows that participation in research activities predicts college outcomes such as GPA, retention, and persistence. Even though these studies inform us of the importance of REU programs, many programmatic efforts are summer experiences and, while students may receive support, faculty mentors rarely receive coaching or professional development efforts. What distinguishes the LREU program is the focus on the deliberative development of students’ professional and research skills; faculty coaching on the Affinity Research Group model; and the learning community established to share experiences and practices and to learn from each other. Students, who are matched with faculty mentors based on their areas of interest, work with their mentor to co-create a research plan. Students keep a research journal in which they record what they have learned and identify areas for their growth and development as researchers. The LREU provides an opportunity for the LREU participants to cultivate a growth mindset through deliberate practice and reflection from personal, professional, social, and academic perspectives. The paper discusses the multi-institutional perspectives that help CAHSI understand the types of challenges faced in undergraduate research programs, how faculty mentors communicate and make decisions, and how mentors resolve challenges, allowing the research community to better understand students’ and faculty experiences. In addition, the paper reports on research and evaluation results that documented mentors’ growth in their knowledge of effective research mentoring practices and students’ learning gains in research and other skills. The paper also describes the impact of the learning community, e.g., how it supports developing strategies for interaction with and mentoring students from underrepresented populations.more » « less
-
IntroductionDespite efforts to increase the participation of marginalized students in Science, Technology, Engineering, and Mathematics (STEM), neurodivergent students have remained underrepresented and underserved in STEM graduate programs. This qualitative study aims to increase understanding of the experiences of neurodivergent graduate students pursuing advanced degrees in STEM. In this analysis, we consider how common graduate school experiences interface with the invisibility of neurological diversity, thus contributing to a set of unique challenges experienced by neurodivergent students. Materials and methodsIn this qualitative study, 10 focus group sessions were conducted to examine the experiences of 18 students who identify as neurodivergent in graduate STEM programs at a large, research-intensive (R1) university. We used thematic analysis of the transcripts from these focus groups to identify three overarching themes within the data. ResultsThe findings are presented through a novel model for understanding neurodivergent graduate STEM student experiences. The findings suggest that students who identify as neurodivergent feel pressure to conform to perceived neurotypical norms to avoid negative perceptions. They also may self-silence to maintain stability within the advisor-advisee relationship. The stigma associated with disability labels contributes a heavy cognitive and emotional load as students work to mask neurodiversity-related traits, navigate decisions about disclosure of their neurodivergence, and ultimately, experience significant mental health challenges and burnout. Despite these many challenges, the neurodivergent graduate students in this study perceived aspects of their neurodivergence as a strength. DiscussionThe findings may have implications for current and future graduate students, for graduate advisors who may or may not be aware of their students’ neurodivergence, and for program administrators who influence policies that impact the wellbeing and productivity of neurodivergent students.more » « less
-
null (Ed.)One of the major barriers to increasing the percentage of underrepresented minority (URM) faculty in STEM fields is the small number of URM applicants for academic positions. Recent studies have shown that African-American and Hispanic/Latinx students make up only 2.7% and 3.3%, respectively, of doctorates granted in STEM disciplines in the U.S. Additionally, the 2-year attrition rate of URM doctoral students is nearly 50%, substantially greater than the rate for non-URM students at most institutions. This presentation reports on an effort by an alliance of three North Carolina public universities to develop, implement, and test a model to improve these URM outcomes. The project involves adapting and implementing research-based institutional change strategies that positively impact URM graduate students in STEM disciplines. Each participating department has a volunteer faculty member interested in URM success issues designated as a "AGEP-NC Faculty Fellow." The Fellow receives support and training on mentoring, the experiences of underrepresented minority students, and on fostering change. First, the Fellows introduce their departmental colleagues to best practices in supporting URM students in PhD programs. Together with their department head and director of graduate programs, they work with the faculty to understand graduate student pathways, identify practices and policies that promote success, and diagnose trouble spots. Based on this study of the graduate student experience in their own department, the faculty then develop a departmental diversity plan to build these insights into departmental practices and procedures. This presentation will overview the project design for the 5-year program, share materials used in the Faculty Fellow training, and summarize preliminary findings from surveys regarding attitudes and perceptions of the faculty and graduate students in the Year 1 cohort of six departments. The project is supported by the NSF AGEP(Alliances for Graduate Education and the Professoriate) program.more » « less
An official website of the United States government

