skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A robot made of robots: Emergent transport and control of a smarticle ensemble
Robot locomotion is typically generated by coordinated integration of single-purpose components, like actuators, sensors, body segments, and limbs. We posit that certain future robots could self-propel using systems in which a delineation of components and their interactions is not so clear, becoming robust and flexible entities composed of functional components that are redundant and generic and can interact stochastically. Control of such a collective becomes a challenge because synthesis techniques typically assume known input-output relationships. To discover principles by which such future robots can be built and controlled, we study a model robophysical system: planar ensembles of periodically deforming smart, active particles—smarticles. When enclosed, these individually immotile robots could collectively diffuse via stochastic mechanical interactions. We show experimentally and theoretically that directed drift of such a supersmarticle could be achieved via inactivation of individual smarticles and used this phenomenon to generate endogenous phototaxis. By numerically modeling the relationship between smarticle activity and transport, we elucidated the role of smarticle deactivation on supersmarticle dynamics from little data—a single experimental trial. From this mapping, we demonstrate that the supersmarticle could be exogenously steered anywhere in the plane, expanding supersmarticle capabilities while simultaneously enabling decentralized closed-loop control. We suggest that the smarticle model system may aid discovery of principles by which a class of future “stochastic” robots can rely on collective internal mechanical interactions to perform tasks.  more » « less
Award ID(s):
1637764
PAR ID:
10176437
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Robotics
Volume:
4
Issue:
34
ISSN:
2470-9476
Page Range / eLocation ID:
eaax4316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    At the macroscale, controlling robotic swarms typically uses substantial memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that can leverage physical interactions and thus be used across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control. As predicted by theory, as interparticle attraction increases, the collective transitions from dispersed to a compact phase. When aggregated, the collective can transport non-robot “impurities,” thus performing an emergent task driven by the physics underlying the transition. These results reveal a fruitful interplay between algorithm design and active matter robophysics that can result in principles for programming collectives without the need for complex algorithms or capabilities. 
    more » « less
  2. Environments with large terrain height variations present great challenges for legged robot locomotion. Drawing inspiration from fire ants’ collective assembly behavior, we study strategies that can enable two “connectable” robots to collectively navigate over bumpy terrains with height variations larger than robot leg length. Each robot was designed to be extremely simple, with a cubical body and one rotary motor actuating four vertical peg legs that move in pairs. Two or more robots could physically connect to one another to enhance collective mobility. We performed locomotion experiments with a two-robot group, across an obstacle field filled with uniformlydistributed semi-spherical “boulders”. Experimentally-measured robot speed suggested that the connection length between the robots has a significant effect on collective mobility: connection length C ∈ [0.86, 0.9] robot unit body length (UBL) were able to produce sustainable movements across the obstacle field, whereas connection length C ∈ [0.63, 0.84] and [0.92, 1.1] UBL resulted in low traversability. An energy landscape based model revealed the underlying mechanism of how connection length modulated collective mobility through the system’s potential energy landscape, and informed adaptation strategies for the two-robot system to adapt their connection length for traversing obstacle fields with varying spatial frequencies. Our results demonstrated that by varying the connection configuration between the robots, the tworobot system could leverage mechanical intelligence to better utilize obstacle interaction forces and produce improved locomotion. Going forward, we envision that generalized principles of robotenvironment coupling can inform design and control strategies for a large group of small robots to achieve ant-like collective environment negotiation. 
    more » « less
  3. Limbless locomotors, from microscopic worms to macroscopic snakes, traverse complex, heterogeneous natural environments typically using undulatory body wave propagation. Theoretical and robophysical models typically emphasize body kinematics and active neural/electronic control. However, we contend that because such approaches often neglect the role of passive, mechanically controlled processes (those involving “mechanical intelligence”), they fail to reproduce the performance of even the simplest organisms. To uncover principles of how mechanical intelligence aids limbless locomotion in heterogeneous terradynamic regimes, here we conduct a comparative study of locomotion in a model of heterogeneous terrain (lattices of rigid posts). We used a model biological system, the highly studied nematode wormCaenorhabditis elegans, and a robophysical device whose bilateral actuator morphology models that of limbless organisms across scales. The robot’s kinematics quantitatively reproduced the performance of the nematodes with purely open-loop control; mechanical intelligence simplified control of obstacle navigation and exploitation by reducing the need for active sensing and feedback. An active behavior observed inC. elegans, undulatory wave reversal upon head collisions, robustified locomotion via exploitation of the systems’ mechanical intelligence. Our study provides insights into how neurally simple limbless organisms like nematodes can leverage mechanical intelligence via appropriately tuned bilateral actuation to locomote in complex environments. These principles likely apply to neurally more sophisticated organisms and also provide a design and control paradigm for limbless robots for applications like search and rescue and planetary exploration. 
    more » « less
  4. One potential application of multirobot systems is collective transport, a task in which multiple robots collaboratively move a payload that is too large or heavy for a single robot. In this review, we highlight a variety of control strategies for collective transport that have been developed over the past three decades. We characterize the problem scenarios that have been addressed in terms of the control objective, the robot platform and its interaction with the payload, and the robots’ capabilities and information about the payload and environment. We categorize the control strategies according to whether their sensing, computation, and communication functions are performed by a centralized supervisor or specialized robot or autonomously by the robots. We provide an overview of progress toward control strategies that can be implemented on robots with expanded autonomous functionality in uncertain environments using limited information, and we suggest directions for future work on developing such controllers. 
    more » « less
  5. Abstract The properties of materials and structures typically remain fixed after being designed and manufactured. There is a growing interest in systems with the capability of altering their behaviors without changing geometries or material constitutions, because such reprogrammable behaviors could unlock multiple functionalities within a single design. We introduce an optimization-driven approach, based on multi-objective magneto-mechanical topology optimization, to design magneto-active metamaterials and structures whose properties can be seamlessly reprogrammed by switching on and off the external stimuli fields. This optimized material system exhibits one response under pure mechanical loading, and switches to a distinct response under joint mechanical and magnetic stimuli. We discover and experimentally demonstrate magneto-mechanical metamaterials and metastructures that realize a wide range of reprogrammable responses, including multi-functional actuation responses, adaptable snap-buckling behaviors, switchable deformation modes, and tunable bistability. The proposed approach paves the way for promising applications such as magnetic actuators, soft robots, and energy harvesters. 
    more » « less