skip to main content


Title: Game of Sloanes: best known packings in complex projective space
It is often of interest to identify a given number of points in projective space such that the minimum distance between any two points is as large as possible. Such configurations yield representations of data that are optimally robust to noise and erasures. The minimum distance of an optimal configuration not only depends on the number of points and the dimension of the projective space, but also on whether the space is real or complex. For decades, Neil Sloane’s online Table of Grassmannian Packings has been the go-to resource for putatively or provably optimal packings of points in real projective spaces. Using a variety of numerical algorithms, we have created a similar table for complex projective spaces. This paper surveys the relevant literature, explains some of the methods used to generate the table, presents some new putatively optimal packings, and invites the reader to competitively contribute improvements to this table.  more » « less
Award ID(s):
1830066 1829955
NSF-PAR ID:
10176919
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Wavelets and Sparsity XVIII
Page Range / eLocation ID:
49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a general program for finding nice arrangements of points in real or complex projective space from transitive actions of finite groups. In many cases, these arrangements are optimal in the sense of maximizing the minimum distance. We introduce our program in terms of general Schurian association schemes before focusing on the special case of Gelfand pairs. Notably, our program unifies a variety of existing packings with heretofore disparate constructions. In addition, we leverage our program to construct the first known infinite family of equiangular lines with Heisenberg symmetry. 
    more » « less
  2. null (Ed.)
    Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, ${{\mathbb{S}}}^1$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in ${\mathbb{R}}^3$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in ${\mathbb{R}}^3$. 
    more » « less
  3. This paper presents convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature rule: one on quadrature weights, and the other on design points. More precisely, we show that convergence rates can be derived (i) if the sum of absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance between design points does not decrease very quickly. As a consequence of the latter result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We reveal a condition on design points to make Bayesian quadrature robust to misspecification, and show that, under this condition, it may adaptively achieve the optimal rate of convergence in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand), under a slightly stronger regularity condition on the integrand. 
    more » « less
  4. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less
  5. Abstract We note that the recent polynomial proofs of the spherical and complex plank covering problems by Zhao and Ortega-Moreno give some general information on zeros of real and complex polynomials restricted to the unit sphere. As a corollary of these results, we establish several generalizations of the celebrated Bang plank covering theorem. We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and an even stronger polynomial version for the complex projective space. Specifically, for the ball, we show that for every real nonzero $d$-variate polynomial $P$ of degree $n$, there exists a point in the unit $d$-dimensional ball at distance at least $1/n$ from the zero set of the polynomial $P$. Using the polynomial approach, we also prove the strengthening of the Fejes Tóth zone conjecture on covering a sphere by spherical segments, closed parts of the sphere between two parallel hyperplanes. In particular, we show that the sum of angular widths of spherical segments covering the whole sphere is at least $\pi $. 
    more » « less