skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open Source Software Tools for Teaching Neuroscience
We developed an interdisciplinary course in computational neuroscience to address the need for students trained in both biological/psychological and quantitative sciences. Increasingly, exposure to advanced math and physics is important to stay on the cutting edge of developments and research in neuroscience. Additionally, the ability to work in multidisciplinary teams will continue to be an asset as the field develops. This course brings together students from biology, psychology, biochemistry, engineering, physics, and mathematics. The course was designed to highlight the importance of math in understanding fundamental neuroscience concepts and to prepare students for professional careers in neuroscience. They learn neurobiology, via a ‘biology to model and back again’ approach involving wet- and software/modeling-labs, with the latter being the focus of this paper  more » « less
Award ID(s):
1659831
PAR ID:
10176940
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of undergraduate neuroscience education
Volume:
16
Issue:
3
ISSN:
1544-2896
Page Range / eLocation ID:
A197-A202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement. 
    more » « less
  2. This article explores the frequency with which scientific ethics courses are available to biology, chemistry, and physics students for credit towards their B.S. degrees in United States undergraduate institutions. After examining undergraduate catalogs for ethics-related course requirements and elective offerings in the fields of biology, chemistry, and physics (along with each discipline’s sub-degree-level concentrations), we identified each relevant course as either “focusing on scientific ethics” or “including scientific ethics at some level.” We categorized each institution by governance type (public or private) and size (large or small). We found that scientific ethics courses are offered infrequently among most institution and program categories, and tend to include scientific ethics as a secondary focus. Additionally, we found that scientific ethics courses are most frequently offered to biology students at large public institutions, and least frequently offered to physics students at large private institutions. 
    more » « less
  3. Abstract Introductory biochemistry courses are often challenging for students because they require the integration of chemistry, biology, physics, math, and physiology knowledge and frameworks to understand and apply a large body of knowledge. This can be complicated by students' persistent misconceptions of fundamental concepts and lack of fluency with the extensive visual and symbolic literacy used in biochemistry. Card sorting tasks and game‐based activities have been used to reveal insights into how students are assimilating, organizing, and structuring disciplinary knowledge, and how they are progressing along a continuum from disciplinary novice to expert. In this study, game‐based activities and card sorting tasks were used to promote and evaluate students' understanding of fundamental structure–function relationships in biochemistry. Our results suggest that while many markers of expertise increased for both the control and intervention groups over the course of the semester, students involved in the intervention activities tended to move further towards expert‐like sorting. This indicates that intentional visual literacy game‐based activities have the ability to build underdeveloped skills in undergraduate students. 
    more » « less
  4. null (Ed.)
    The purpose of this study was to evaluate the preliminary outcomes of a learning community intervention (LC), which was based on the performance pyramid theoretical model of student supports. The LC integrated college algebra into biology course work. We used a quasi-experimental design to compare LC students to separate General Biology I and College Algebra course control groups on respective measures of biology and algebra course knowledge, and an assessment of perceived performance pyramid supports. Participants included 198 students (LC, n = 22; biology control, n = 52; mathematics control, n = 124) at a Historically Black University in the Southern United States. An analysis of covariance (ANCOVA) indicated that the LC students had significantly greater performance from pre- to post-test on a measure of biology course knowledge (Cohen’s d = 0.76) compared to the biology control group. An ANCOVA indicated that the LC and mathematics control students performed similarly on a measure of algebra course knowledge. Group differences from a multivariate analysis of covariance on perceived performance pyramid supports were mostly statistically non-significant. Overall, the LC increased biology course performance. Implications for improving biology course performance and better assessment of students’ perceptions of support for academic success are discussed. 
    more » « less
  5. Neuroscientists are increasingly relying on parallel and distributed computing resources for analysis and visualization of their neuron simulations. This requires expert knowledge of programming and cyberinfrastructure configuration, which is beyond the repertoire of most neuroscience programs. This paper presents early experiences from a one-credit graduate research training course titled ECE 8001 “Software and Cyber Automation in Neuroscience” at the University of Missouri for engendering multi-disciplinary collaborations between computational neuroscience and cyberinfrastructure students and faculty. Specifically, we discuss the course organization and exemplar outcomes involving a next-generation science gateway for training novice users on exemplar neuroscience use cases that involve using tools such as NEURON and MATLAB on local as well as Neuroscience Gateway resources. We also discuss our vision towards a course sequence curriculum for graduate/undergraduate students from biological/psychological sciences and computer science/engineering to jointly build “self- service” training modules using Jupyter Notebook platforms. Thus, our efforts show how we can create scalable and sustainable cyber and software automation for fulfilling a broad set of neuroscience research and education use cases. 
    more » « less