skip to main content


Title: Parallel residual projection: a new paradigm for solving linear inverse problems
Abstract

A grand challenge to solve a large-scale linear inverse problem (LIP) is to retain computational efficiency and accuracy regardless of the growth of the problem size. Despite the plenitude of methods available for solving LIPs, various challenges have emerged in recent times due to the sheer volume of data, inadequate computational resources to handle an oversized problem, security and privacy concerns, and the interest in the associated incremental or decremental problems. Removing these barriers requires a holistic upgrade of the existing methods to be computationally efficient, tractable, and equipped with scalable features. We, therefore, develop the parallel residual projection (PRP), a parallel computational framework involving the decomposition of a large-scale LIP into sub-problems of low complexity and the fusion of the sub-problem solutions to form the solution to the original LIP. We analyze the convergence properties of the PRP and accentuate its benefits through its application to complex problems of network inference and gravimetric survey. We show that any existing algorithm for solving an LIP can be integrated into the PRP framework and used to solve the sub-problems while handling the prevailing challenges.

 
more » « less
Award ID(s):
1763070 1810202 1933976
NSF-PAR ID:
10177364
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have shown their success as high-dimensional function approximators in many applications; however, training DNNs can be challenging in general. DNN training is commonly phrased as a stochastic optimization problem whose challenges include non-convexity, non-smoothness, insufficient regularization, and complicated data distributions. Hence, the performance of DNNs on a given task depends crucially on tuning hyperparameters, especially learning rates and regularization parameters. In the absence of theoretical guidelines or prior experience on similar tasks, this requires solving many training problems, which can be time-consuming and demanding on computational resources. This can limit the applicability of DNNs to problems with non-standard, complex, and scarce datasets, e.g., those arising in many scientific applications. To remedy the challenges of DNN training, we propose slimTrain, a stochastic optimization method for training DNNs with reduced sensitivity to the choice hyperparameters and fast initial convergence. The central idea of slimTrain is to exploit the separability inherent in many DNN architectures; that is, we separate the DNN into a nonlinear feature extractor followed by a linear model. This separability allows us to leverage recent advances made for solving large-scale, linear, ill-posed inverse problems. Crucially, for the linear weights, slimTrain does not require a learning rate and automatically adapts the regularization parameter. Since our method operates on mini-batches, its computational overhead per iteration is modest. In our numerical experiments, slimTrain outperforms existing DNN training methods with the recommended hyperparameter settings and reduces the sensitivity of DNN training to the remaining hyperparameters. 
    more » « less
  2. The offline pickup and delivery problem with time windows (PDPTW) is a classical combinatorial optimization problem in the transportation community, which has proven to be very challenging computationally. Due to the complexity of the problem, practical problem instances can be solved only via heuristics, which trade-off solution quality for computational tractability. Among the various heuristics, a common strategy is problem decomposition, that is, the reduction of a large-scale problem into a collection of smaller sub-problems, with spatial and temporal decompositions being two natural approaches. While spatial decomposition has been successful in certain settings, effective temporal decomposition has been challenging due to the difficulty of stitching together the sub-problem solutions across the decomposition boundaries. In this work, we introduce a novel temporal decomposition scheme for solving a class of PDPTWs that have narrow time windows, for which it is able to provide both fast and high-quality solutions. We utilize techniques that have been popularized recently in the context of online dial-a-ride problems along with the general idea of rolling horizon optimization. To the best of our knowledge, this is the first attempt to solve offline PDPTWs using such an approach. To show the performance and scalability of our framework, we use the optimization of paratransit services as a motivating example. Due to the lack of benchmark solvers similar to ours (i.e., temporal decomposition with an online solver), we compare our results with an offline heuristic algorithm using Google OR-Tools. In smaller problem instances (with an average of 129 requests per instance), the baseline approach is as competitive as our framework. However, in larger problem instances (approximately 2,500 requests per instance), our framework is more scalable and can provide good solutions to problem instances of varying degrees of difficulty, while the baseline algorithm often fails to find a feasible solution within comparable compute times. 
    more » « less
  3. Abstract

    The inverse problem for radiative transfer is important in many applications, such as optical tomography and remote sensing. Major challenges include large memory requirements and computational expense, which arise from high-dimensionality and the need for iterations in solving the inverse problem. Here, to alleviate these issues, we propose adaptive-mesh inversion: a goal-orientedhp-adaptive mesh refinement method for solving inverse radiative transfer problems. One novel aspect here is that the two optimizations (one for inversion, and one for mesh adaptivity) are treated simultaneously and blended together. By exploiting the connection between duality-based mesh adaptivity and adjoint-based inversion techniques, we propose a goal-oriented error estimator, which is cheap to compute, and can efficiently guide the mesh-refinement to numerically solve the inverse problem. We use discontinuous Galerkin spectral element methods to discretize the forward and the adjoint problems. Then, based on the goal-oriented error estimator, we propose anhp-adaptive algorithm to refine the meshes. Numerical experiments are presented at the end and show convergence speed-up and reduced memory occupation by the goal-oriented mesh adaptive method.

     
    more » « less
  4. Civic problems are often too complex to solve through traditional top-down strategies. Various governments and civic initiatives have explored more community-driven strategies where citizens get involved with defining problems and innovating solutions. While certain people may feel more empowered, the public at large often does not have accessible, flexible, and meaningful ways to engage. Prior theoretical frameworks for public participation typically offer a one-size-fits-all model based on face-to-face engagement and fail to recognize the barriers faced by even the most engaged citizens. In this article, we explore a vision for open civic design where we integrate theoretical frameworks from public engagement, crowdsourcing, and design thinking to consider the role technology can play in lowering barriers to large-scale participation, scaffolding problem-solving activities, and providing flexible options that cater to individuals’ skills, availability, and interests. We describe our novel theoretical framework and analyze the key goals associated with this vision: (1) to promote inclusive and sustained participation in civics; (2) to facilitate effective management of large-scale participation; and (3) to provide a structured process for achieving effective solutions. We present case studies of existing civic design initiatives and discuss challenges, limitations, and future work related to operationalizing, implementing, and testing this framework. 
    more » « less
  5. Abstract

    Community detection decomposes large‐scale, complex networks “optimally” into sets of smaller sub‐networks. It finds sub‐networks that have the least inter‐connections and the most intra‐connections. This article presents an efficient community detection algorithm that detects community structures in a weighted network by solving a multi‐objective optimization problem. The whale optimization algorithm is extended to enable it to handle multi‐objective optimization problems with discrete variables and to solve the problems on parallel processors. To this end, the population's positions are discretized using a transfer function that maps real variables to discrete variables, the initialization steps for the algorithm are modified to prevent generating unrealistic connections between variables, and the updating step of the algorithm is redefined to produce integer numbers. To identify the community configurations that are Pareto optimal, the non‐dominated sorting concept is adopted. The proposed algorithm is tested on the Tennessee Eastman process and several benchmark community‐detection problems.

     
    more » « less