skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications of the WW-type approximation to SIDIS
We explore the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q2) terms in the Wandzura-Wilczek-type (WW-type) approximation, which consists in systematically assuming that q¯gq-correlators are much smaller than q¯q-correlators. Under the applicability of WW-type approximations, certain relations among transverse momentum dependent parton distribution functions (TMDs) and fragmentation functions (FFs) occur which are used to approximate SIDIS cross-section in terms of a smaller subset of TMDs and FFs. We discuss the applicability of the WW-type approximations on the basis of available data.  more » « less
Award ID(s):
1812423
PAR ID:
10177389
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
27th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2019)
Volume:
352
Page Range / eLocation ID:
211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed O(1/Q^2) terms in the Wandzura-Wilczek-type approximation, which consists in systematically assuming that qgqbar-terms are much smaller than qqbar -correlators. We compute all twist-2 and twist-3 structure functions and the corresponding asymmetries, and discuss the applicability of the Wandzura-Wilczek-type approximations on the basis of available data. We make predictions that can be tested by data from COMPASS, HERMES, Jefferson Lab, and the future Electron-Ion Collider. The results of this paper can be readily used for phenomenology and for event generators, and will help to improve the description of semi-inclusive deep-inelastic processes in terms of transverse momentum dependent parton distribution functions and fragmentation functions beyond the leading twist. 
    more » « less
  2. A bstract A search for new heavy resonances decaying to a pair of Higgs bosons (HH) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. Data were collected with the CMS detector at the LHC in 2016–2018, corresponding to an integrated luminosity of 138 fb − 1 . Resonances with a mass between 0.8 and 4.5 TeV are considered using events in which one Higgs boson decays into a bottom quark pair and the other into final states with either one or two charged leptons. Specifically, the single-lepton decay channel $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}{\mathrm{WW}}^{\ast}\to \mathrm{b}\overline{\mathrm{b}}\ell v\mathrm{q}{\overline{\mathrm{q}}}^{\prime } $$ HH → b b ¯ WW ∗ → b b ¯ ℓ v q q ¯ ′ and the dilepton decay channels $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}{\mathrm{WW}}^{\ast}\to \mathrm{b}\overline{\mathrm{b}}\ell v\ell v $$ HH → b b ¯ WW ∗ → b b ¯ ℓ v ℓ v and $$ \mathrm{HH}\to \mathrm{b}\overline{\mathrm{b}}\uptau \uptau \to \mathrm{b}\overline{\mathrm{b}}\ell vv\ell vv $$ HH → b b ¯ ττ → b b ¯ ℓ vv ℓ vv are examined, where ℓ in the final state corresponds to an electron or muon. The signal is extracted using a two-dimensional maximum likelihood fit of the $$ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $$ H → b b ¯ jet mass and HH invariant mass distributions. No significant excess above the standard model expectation is observed in data. Model-independent exclusion limits are placed on the product of the cross section and branching fraction for narrow spin-0 and spin-2 massive bosons decaying to HH. The results are also interpreted in the context of radion and bulk graviton production in models with a warped extra spatial dimension. The results provide the most stringent limits to date for X → HH signatures with final-state leptons and at some masses provide the most sensitive limits of all X → HH searches. 
    more » « less
  3. A<sc>bstract</sc> The results of a search for Higgs boson pair (HH) production in the WW*WW*, WW*ττ, andττττdecay modes are presented. The search uses 138 fb−1of proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV from 2016 to 2018. Analyzed events contain two, three, or four reconstructed leptons, including electrons, muons, and hadronically decaying tau leptons. No evidence for a signal is found in the data. Upper limits are set on the cross section for nonresonant HH production, as well as resonant production in which a new heavy particle decays to a pair of Higgs bosons. For nonresonant production, the observed (expected) upper limit on the cross section at 95% confidence level (CL) is 21.3 (19.4) times the standard model (SM) prediction. The observed (expected) ratio of the trilinear Higgs boson self-coupling to its value in the SM is constrained to be within the interval −6.9 to 11.1 (−6.9 to 11.7) at 95% CL, and limits are set on a variety of new-physics models using an effective field theory approach. The observed (expected) limits on the cross section for resonant HH production range from 0.18 to 0.90 (0.08 to 1.06) pb at 95% CL for new heavy-particle masses in the range 250–1000 GeV. 
    more » « less
  4. Alexeev, A.; Frenkel, E.; Rosso, M.; Webster, B.; Yakimov, M. (Ed.)
    We propose solutions of the quantum Q-systems of types BN,CN,DN in terms of q-difference operators, generalizing our previous construction for the Q- system of type A. The difference operators are interpreted as q-Whittaker limits of discrete time evolutions of Macdonald-van Diejen type operators. We conjecture that these new operators act as raising and lowering operators for q-Whittaker functions, which are special cases of graded characters of fusion products of KR- modules. 
    more » « less
  5. null (Ed.)
    Summary We consider the problem of approximating smoothing spline estimators in a nonparametric regression model. When applied to a sample of size $$n$$, the smoothing spline estimator can be expressed as a linear combination of $$n$$ basis functions, requiring $O(n^3)$ computational time when the number $$d$$ of predictors is two or more. Such a sizeable computational cost hinders the broad applicability of smoothing splines. In practice, the full-sample smoothing spline estimator can be approximated by an estimator based on $$q$$ randomly selected basis functions, resulting in a computational cost of $O(nq^2)$. It is known that these two estimators converge at the same rate when $$q$$ is of order $$O\{n^{2/(pr+1)}\}$$, where $$p\in [1,2]$$ depends on the true function and $r > 1$ depends on the type of spline. Such a $$q$$ is called the essential number of basis functions. In this article, we develop a more efficient basis selection method. By selecting basis functions corresponding to approximately equally spaced observations, the proposed method chooses a set of basis functions with great diversity. The asymptotic analysis shows that the proposed smoothing spline estimator can decrease $$q$$ to around $$O\{n^{1/(pr+1)}\}$$ when $$d\leq pr+1$$. Applications to synthetic and real-world datasets show that the proposed method leads to a smaller prediction error than other basis selection methods. 
    more » « less