skip to main content

Title: Influence of microwave photo-excitation on the transport properties of the high mobility GaAs/AlGaAs 2D electron system
ABSTRACT We examined the influence of the microwave power on the diagonal resistance in the GaAs/AlGaAs two dimensional electron system (2DES), in order to extract the electron temperature and determine microwave induced heating as a function of the microwave power. The study shows that microwaves produce a small discernable increase in the electron temperature both at null magnetic field and at finite magnetic fields in the GaAs/AlGaAs 2DES. The heating effect at null field appears greater in comparison to the examined finite field interval, although the increase in the electron temperature in the zero-field limit appears smaller than theoretical predictions.
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
MRS Advances
Page Range or eLocation-ID:
3347 to 3352
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A metallic state with a vanishing activation gap, at a filling factor $$\nu = 8/5$$ ν = 8 / 5 in the untilted specimen with $$n= 2 \times 10^{11} cm^{-2}$$ n = 2 × 10 11 c m - 2 , and at $$\nu = 4/3$$ ν = 4 / 3 at $$n=1.2 \times 10^{11} cm^{-2}$$ n = 1.2 × 10 11 c m - 2 under a $$\theta = 66^{0}$$ θ = 66 0 tilted magnetic field, is examined through a microwave photo-excited transport study of the GaAs/AlGaAs 2 dimensional electron system (2DES). The results presented here suggest, remarkably, that at the possible degeneracy point of states with different spin polarization, where the 8/5 or 4/3 FQHE vanish, there occurs a peculiar marginal metallic state that differs qualitatively from a quantum Hall insulating state and the usual quantum Hall metallic state. Such a marginal metallic state occurs most prominently at $$\nu =8/5$$ ν = 8 / 5 , and at $$\nu =4/3$$ ν = 4 / 3 under tilt as mentioned above, over the interval $$1 \le \nu \le 2$$ 1 ≤ ν ≤ 2 , that also includes the $$\nu = 3/2$$ ν = 3 / 2more »state, which appears perceptibly gapped in the first instance.« less
  2. Abstract Low-dimensional nano and two-dimensional materials are of great interest to many disciplines and may have a lot of applications in fields such as electronics, optoelectronics, and photonics. One can create quantum Hall phases by applying a strong magnetic field perpendicular to a two-dimensional electron system. One characterizes the nature of the system by looking at magneto-transport data. There have been a few quantum phases seen in past experiments on GaAs/AlGaAs heterostructures that manifest anisotropic magnetoresistance, typically, in high Landau levels. In this work, we model the source of anisotropy as originating from an internal anisotropic interaction between electrons. We use this framework to study the possible anisotropic behavior of finite clusters of electrons at filling factor 1/6 of the lowest Landau level.
  3. This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showedmore »an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by∼<#comment/>3.4%<#comment/>and∼<#comment/>10%<#comment/>, respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications.

    « less
  4. Abstract

    We examine the characteristics of the microwave/mm-wave/terahertz radiation-induced magnetoresistance oscillations in monolayer and bilayer graphene and report that the oscillation frequency of the radiation-induced magnetoresistance oscillations in the massless, linearly dispersed monolayer graphene system should depend strongly both on the Fermi energy, and the radiation frequency, unlike in the case of the massive, parabolic, GaAs/AlGaAs 2D electron system, where the radiation-induced magnetoresistance oscillation frequency depends mainly on the radiation frequency. This possible dependence of the magnetoresistance oscillation frequency on the Fermi level at a fixed radiation frequency also suggests a sensitivity to the gate voltage in gated graphene, which suggests anin-situtunable photo-excitation response in monolayer graphene that could be useful for sensing applications. In sharp contrast to monolayer graphene, bilayer graphene is expected to show radiation-induced magnetoresistance oscillations more similar to the results observed in the GaAs/AlGaAs 2D system. Such expectations for the radiation-induced magnetoresistance oscillations are presented here to guide future experimental studies in both of these modern atomic layer material systems.

  5. Context. We investigate the chromospheric counterpart of small-scale coronal loops constituting a coronal bright point (CBP) and its response to a photospheric magnetic-flux increase accompanied by co-temporal CBP heating. Aims. The aim of this study is to simultaneously investigate the chromospheric and coronal layers associated with a CBP, and in so doing, provide further understanding on the heating of plasmas confined in small-scale loops. Methods. We used co-observations from the Atmospheric Imaging Assembly and Helioseismic Magnetic Imager on board the Solar Dynamics Observatory, together with data from the Fast Imaging Solar Spectrograph taken in the H α and Ca  II 8542.1 Å lines. We also employed both linear force-free and potential field extrapolation models to investigate the magnetic topology of the CBP loops and the overlying corona, respectively. We used a new multi-layer spectral inversion technique to derive the temporal variations of the temperature of the H α loops (HLs). Results. We find that the counterpart of the CBP, as seen at chromospheric temperatures, is composed of a bundle of dark elongated features named in this work H α loops, which constitute an integral part of the CBP loop magnetic structure. An increase in the photospheric magnetic flux due tomore »flux emergence is accompanied by a rise of the coronal emission of the CBP loops, that is a heating episode. We also observe enhanced chromospheric activity associated with the occurrence of new HLs and mottles. While the coronal emission and magnetic flux increases appear to be co-temporal, the response of the H α counterpart of the CBP occurs with a small delay of less than 3 min. A sharp temperature increase is found in one of the HLs and in one of the CBP footpoints estimated at 46% and 55% with respect to the pre-event values, also starting with a delay of less than 3 min following the coronal heating episode. The low-lying CBP loop structure remains non-potential for the entire observing period. The magnetic topological analysis of the overlying corona reveals the presence of a coronal null point at the beginning and towards the end of the heating episode. Conclusions. The delay in the response of the chromospheric counterpart of the CBP suggests that the heating may have occurred at coronal heights.« less