Marsh elevation was measured with a Surface Elevation Table (SET) as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Other data collected as part of the project include aboveground annual primary productivity, plant biomass, plant density and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at 7 Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Marsh elevation sampling began in 1990, 1991, 1996 or 2000, depending on the site. Sampling occurred approximately monthly or approximately annually through 2022. The study is on-going. Additionally, some plots were fertilized with nitrogen and phosphorus.
more »
« less
Estimating Aboveground Biomass and Its Spatial Distribution in Coastal Wetlands Utilizing Planet Multispectral Imagery
Coastal salt marshes are biologically productive ecosystems that generate and sequester significant quantities of organic matter. Plant biomass varies spatially within a salt marsh and it is tedious and often logistically impractical to quantify biomass from field measurements across an entire landscape. Satellite data are useful for estimating aboveground biomass, however, high-resolution data are needed to resolve the spatial details within a salt marsh. This study used 3-m resolution multispectral data provided by Planet to estimate aboveground biomass within two salt marshes, North Inlet-Winyah Bay (North Inlet) National Estuary Research Reserve, and Plum Island Ecosystems (PIE) Long-Term Ecological Research site. The Akaike information criterion analysis was performed to test the fidelity of several alternative models. A combination of the modified soil vegetation index 2 (MSAVI2) and the visible difference vegetation index (VDVI) gave the best fit to the square root-normalized biomass data collected in the field at North Inlet (Willmott’s index of agreement d = 0.74, RMSE = 223.38 g/m2, AICw = 0.3848). An acceptable model was not found among all models tested for PIE data, possibly because the sample size at PIE was too small, samples were collected over a limited vertical range, in a different season, and from areas with variable canopy architecture. For North Inlet, a model-derived landscape scale biomass map showed differences in biomass density among sites, years, and showed a robust relationship between elevation and biomass. The growth curve established in this study is particularly useful as an input for biogeomorphic models of marsh development. This study showed that, used in an appropriate model with calibration, Planet data are suitable for computing and mapping aboveground biomass at high resolution on a landscape scale, which is needed to better understand spatial and temporal trends in salt marsh primary production.
more »
« less
- PAR ID:
- 10177846
- Date Published:
- Journal Name:
- Remote Sensing
- Volume:
- 11
- Issue:
- 17
- ISSN:
- 2072-4292
- Page Range / eLocation ID:
- 2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aboveground biomass and plant density were measured non-destructively as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Biomass was calculated from plant height measurements using allometric equations. Annual productivity was calculated from approximately-monthly biomass estimates. In addition to plant height measurements, observations of snails in sample plots were recorded. Other data collected as part of the project include marsh surface elevation and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at one location in 1984, and at three additional locations in 1986. Sampling occurred approximately monthly through 2022. The study is on-going. There are four sampling locations at two sites. Two locations are in the low marsh; two locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus.more » « less
-
Aboveground biomass and plant density were measured non-destructively as a component of a long-term project seeking to understand how salt marsh primary production and sediment chemistry respond to anthropogenic (e.g. eutrophication) and natural (e.g. sea-level rise) environmental change. Feedbacks between plants, sediments, nutrients and flooding were investigated with particular attention to mechanisms that keep marshes in equilibrium with sea level. Biomass was calculated from plant height measurements using allometric equations. Annual productivity was calculated from approximately-monthly biomass estimates. In addition to plant height measurements, observations of snails in sample plots were recorded. Other data collected as part of the project include marsh surface elevation and porewater nutrient concentrations. These data have been used to develop the Marsh Equilibrium Model, an important tool for coastal resource managers. Sampling occurred at Spartina alterniflora-dominated salt marsh sites in North Inlet, a relatively pristine estuary near Georgetown, SC on the SE coast of the United States. North Inlet is a tidally-dominated, bar-built estuary, with a semi-diurnal mixed tide and a tidal range of 1.4m. The 25-km2 estuary is comprised of about 20.5 km2 of intertidal salt marsh and mudflats, and 4.5 km2 of open water. Sampling began at one location in 1984, and at three additional locations in 1986. Sampling occurred approximately monthly through 2023. The study is on-going. There are four sampling locations at two sites. Two locations are in the low marsh; two locations are in the high marsh. One high marsh location had control sampling plots in addition to plots fertilized with nitrogen and phosphorus.more » « less
-
Abstract. Estuaries are a conduit of mercury (Hg) from watersheds to the coastal ocean, and salt marshes play an important role in coastal Hg cycling. Hg cycling in upland terrestrial ecosystems has been well studied, but processes in densely vegetated salt marsh ecosystems are poorly characterized. We investigated Hg dynamics in vegetation and soils in the Plum Island Sound estuary in Massachusetts, USA, and specifically assessed the role of marsh vegetation for Hg deposition and turnover. Monthly quantitative harvesting of aboveground biomass showed strong linear seasonal increases in Hg associated with plants, with a 4-fold increase in Hg concentration and an 8-fold increase in standing Hg mass from June (3.9 ± 0.2 µg kg−1 and 0.7 ± 0.4 µg m−2, respectively) to November (16.2 ± 2.0 µg kg−1 and 5.7 ± 2.1 µg m−2, respectively). Hg did not increase further in aboveground biomass after plant senescence, indicating physiological controls of vegetation Hg uptake in salt marsh plants. Hg concentrations in live roots and live rhizomes were 11 and 2 times higher than concentrations in live aboveground biomass, respectively. Furthermore, live belowground biomass Hg pools (Hg in roots and rhizomes, 108.1 ± 83.4 µg m−2) were more than 10 times larger than peak standing aboveground Hg pools (9.0 ± 3.3 µg m−2). A ternary mixing model of measured stable Hg isotopes suggests that Hg sources in marsh aboveground tissues originate from about equal contributions of root uptake (∼ 35 %), precipitation uptake (∼ 33 %), and atmospheric gaseous elemental mercury (GEM) uptake (∼ 32 %). These results suggest a more important role of Hg transport from belowground (i.e., roots) to aboveground tissues in salt marsh vegetation than upland vegetation, where GEM uptake is generally the dominant Hg source. Roots and soils showed similar isotopic signatures, suggesting that belowground tissue Hg mostly derived from soil uptake. Annual root turnover results in large internal Hg recycling between soils and plants, estimated at 58.6 µg m−2 yr−1. An initial mass balance of Hg indicates that the salt marsh presently serves as a small net Hg sink for environmental Hg of 5.2 µg m−2 yr−1.more » « less
-
Abstract Water movement in coastal wetlands is affected by spatial differences in topography and vegetation characteristics as well as by complex hydrological processes operating at different time scales. Traditionally, numerical models have been used to explore the hydrodynamics of these valuable ecosystems. However, we still do not know how well such models simulate water‐level fluctuations beneath the vegetation canopy since we lack extensive field data to test the model results against observations. This study utilizes remotely sensed images of sub‐canopy water‐level change to understand how marshes drain water during falling tides. We employ rapid repeat interferometric observations from the NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar instrument to analyze the spatial variability in water‐level change within a complex of marshes in Terrebonne Bay, Louisiana. We also used maps of herbaceous aboveground biomass derived from the Airborne Visible/Infrared Imaging Spectrometer‐Next Generation to evaluate vegetation contribution to such variability. This study reveals that the distribution of water‐level change under salt marsh canopies is strongly influenced by the presence of small geomorphic features (<10 m) in the marsh landscape (i.e., levees, tidal channels), whereas vegetation plays a minor role in retaining water on the platform. This new type of high‐resolution remote sensing data offers the opportunity to study the feedback between hydrodynamics, topography and biology throughout wetlands at an unprecedented spatial resolution and test the capability of numerical models to reproduce such patterns. Our results are essential for predicting the vulnerability of these delicate environments to climate change.more » « less
An official website of the United States government

