skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SINE: Scalable Incomplete Network Embedding
Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features.  more » « less
Award ID(s):
1763452
PAR ID:
10098996
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. of the 18th IEEE International Conference on Data Mining (ICDM-2018)
Page Range / eLocation ID:
737 to 746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this article, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations using a stochastic gradient descent-based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of the BinaryNE algorithm is available at https://github.com/daokunzhang/BinaryNE. 
    more » « less
  2. Node embedding is the task of extracting concise and informative representations of certain entities that are connected in a network. Various real-world networks include information about both node connectivity and certain node attributes, in the form of features or time-series data. Modern representation learning techniques employ both the connectivity and attribute information of the nodes to produce embeddings in an unsupervised manner. In this context, deriving embeddings that preserve the geometry of the network and the attribute vectors would be highly desirable, as they would reflect both the topological neighborhood structure and proximity in feature space. While this is fairly straightforward to maintain when only observing the connectivity or attribute information of the network, preserving the geometry of both types of information is challenging. A novel tensor factorization approach for node embedding in attributed networks is proposed in this paper, that preserves the distances of both the connections and the attributes. Furthermore, an effective and lightweight algorithm is developed to tackle the learning task and judicious experiments with multiple state-of-the-art baselines suggest that the proposed algorithm offers significant performance improvements in downstream tasks. 
    more » « less
  3. Networked data involve complex information from multifaceted channels, including topology structures, node content, and/or node labels etc., where structure and content are often correlated but are not always consistent. A typical scenario is the citation relationships in scholarly publications where a paper is cited by others not because they have the same content, but because they share one or multiple subject matters. To date, while many network embedding methods exist to take the node content into consideration, they all consider node content as simple flat word/attribute set and nodes sharing connections are assumed to have dependency with respect to all words or attributes. In this paper, we argue that considering topic-level semantic interactions between nodes is crucial to learn discriminative node embedding vectors. In order to model pairwise topic relevance between linked text nodes, we propose topical network embedding, where interactions between nodes are built on the shared latent topics. Accordingly, we propose a unified optimization framework to simultaneously learn topic and node representations from the network text contents and structures, respectively. Meanwhile, the structure modeling takes the learned topic representations as conditional context under the principle that two nodes can infer each other contingent on the shared latent topics. Experiments on three real-world datasets demonstrate that our approach can learn significantly better network representations, i.e., 4.1% improvement over the state-of-the-art methods in terms of Micro-F1 on Cora dataset. (The source code of the proposed method is available through the github link: https:// github.com/codeshareabc/TopicalNE.) 
    more » « less
  4. null (Ed.)
    Attributed network embedding aims to learn low dimensional node representations by combining both the network's topological structure and node attributes. Most of the existing methods either propagate the attributes over the network structure or learn the node representations by an encoder-decoder framework. However, propagation based methods tend to prefer network structure to node attributes, whereas encoder-decoder methods tend to ignore the longer connections beyond the immediate neighbors. In order to address these limitations while enjoying the best of the two worlds, we design cross fusion layers for unsupervised attributed network embedding. Specifically, we first construct two separate views to handle network structure and node attributes, and then design cross fusion layers to allow flexible information exchange and integration between the two views. The key design goals of the cross fusion layers are three-fold: 1) allowing critical information to be propagated along the network structure, 2) encoding the heterogeneity in the local neighborhood of each node during propagation, and 3) incorporating an additional node attribute channel so that the attribute information will not be overshadowed by the structure view. Extensive experiments on three datasets and three downstream tasks demonstrate the effectiveness of the proposed method. 
    more » « less
  5. null (Ed.)
    In the past decade, the amount of attributed network data has skyrocketed, and the problem of identifying their underlying group structures has received significant attention. By leveraging both attribute and link information, recent state-of-the-art network clustering methods have achieved significant improvements on relatively clean datasets. However, the noisy nature of real-world attributed networks has long been overlooked, which leads to degraded performance facing missing or inaccurate attributes and links. In this work, we overcome such weaknesses by marrying the strengths of clustering and embedding on attributed networks. Specifically, we propose GRACE (GRAph Clustering with Embedding propagation), to simultaneously learn network representations and identify network clusters in an end-to-end manner. It employs deep denoise autoencoders to generate robust network embeddings from node attributes, propagates the embeddings in the network to capture node interactions, and detects clusters based on the stable state of embedding propagation. To provide more insight, we further analyze GRACE in a theoretical manner and find its underlying connections with two canonical approaches for network modeling. Extensive experiments on six real-world attributed networks demonstrate the superiority of GRACE over various baselines from the state-of-the-art. Remarkably, GRACE improves the averaged performance of the strongest baseline from 0.43 to 0.52, yielding a 21% relative improvement. Controlled experiments and case studies further verify our intuitions and demonstrate the ability of GRACE to handle noisy information in real-world attributed networks. 
    more » « less