skip to main content


Title: Soft matter from liquid crystals
Liquid crystals (LCs) are fluids within which molecules exhibit long-range orientational order, leading to anisotropic properties such as optical birefringence and curvature elasticity. Because the ordering of molecules within LCs can be altered by weak external stimuli, LCs have been widely used to create soft matter systems that respond optically to electric fields (LC display), temperature (LC thermometer) or molecular adsorbates (LC chemical sensor). More recent studies, however, have moved beyond investigations of optical responses of LCs to explore the design of complex LC-based soft matter systems that offer the potential to realize more sophisticated functions ( e.g. , autonomous, self-regulating chemical responses to mechanical stimuli) by directing the interactions of small molecules, synthetic colloids and living cells dispersed within the bulk of LCs or at their interfaces. These studies are also increasingly focusing on LC systems driven beyond equilibrium states. This review presents one perspective on these advances, with an emphasis on the discovery of fundamental phenomena that may enable new technologies. Three areas of progress are highlighted; (i) directed assembly of amphiphilic molecules either within topological defects of LCs or at aqueous interfaces of LCs, (ii) templated polymerization in LCs via chemical vapor deposition, an approach that overcomes fundamental challenges related to control of LC phase behavior during polymerization, and (iii) studies of colloids in LCs, including chiral colloids, soft colloids that are strained by LCs, and active colloids that are driven into organized states by dissipation of energy ( e.g. bacteria). These examples, and key unresolved issues discussed at the end of this perspective, serve to convey the message that soft matter systems that integrate ideas from LC, surfactant, polymer and colloid sciences define fertile territory for fundamental studies and creation of future transformative technologies.  more » « less
Award ID(s):
1803409
NSF-PAR ID:
10178065
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
35
ISSN:
1744-683X
Page Range / eLocation ID:
6913 to 6929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  2. Abstract

    Liquid crystal (LC) emulsions represent a class of confined soft matter that exhibit exotic internal organizations and size‐dependent properties, including responses to chemical and physical stimuli. Past studies have explored micrometer‐scale LC emulsion droplets but little is known about LC ordering within submicrometer‐sized droplets. This paper reports experiments and simulations that unmask the consequences of confinement in nanoemulsions on strongly chiral LCs that form bulk cholesteric and blue phases (BPs). A method based on light scattering is developed to characterize phase transitions of LCs within the nanodroplets. For droplets with a radius to the pitch ratio (Rv/p0) as small as 2/3, the BP‐to‐cholesteric transition is substantially suppressed, leading to a threefold increase of the BP temperature interval relative to bulk behavior. Complementary simulations align with experimental findings and reveal the dominant role of chiral elastic energy. ForRv/p0 1/3, a single LC phase forms below the clearing point, with simulations revealing the new configuration to contain a τ−1/2disclination that extends across the nanodroplet. These findings are discussed in the context of mechanisms by which polymer networks stabilize BPs and, more broadly, for the design of nanoconfined soft matter.

     
    more » « less
  3. null (Ed.)
    Soft matter that undergoes programmed macroscopic responses to molecular analytes has potential utility in a range of health and safety-related contexts. In this study, we report the design of a nematic liquid crystal (LC) composition that forms through dimerization of carboxylic acids and responds to the presence of vapors of organoamines by undergoing a visually distinct phase transition to an isotropic phase. Specifically, we screened mixtures of two carboxylic acids, 4-butylbenzoic acid and trans-4-pentylcyclohexanecarboxylic acid, and found select compositions that exhibited a nematic phase from 30.6 to 111.7 °C during heating and 110.6 to 3.1 °C during cooling. The metastable nematic phase formed at ambient temperatures was found to be long-lived (>5 days), thus enabling the use of the LC as a chemoresponsive optical material. By comparing experimental infrared (IR) spectra of the LC phase with vibrational frequencies calculated using density functional theory (DFT), we show that it is possible to distinguish between the presence of monomers, homodimers and heterodimers in the mixture, leading us to conclude that a one-to-one heterodimer is the dominant species within this LC composition. Further support for this conclusion is obtained by using differential scanning calorimetry. Exposure of the LC to 12 ppm triethylamine (TEA) triggers a phase transition to an isotropic phase, which we show by IR spectroscopy to be driven by an acid-base reaction, leading to the formation of ammonium carboxylate salts. We characterized the dynamics of the phase transition and found that it proceeds via a characteristic spatiotemporal pathway involving the nucleation, growth, and coalescence of isotropic domains, thus amplifying the atomic-scale acid-base reaction into an information-rich optical output. In contrast to TEA, we determined via both experiment and computation that neither hydrogen bonding donor or acceptor molecules, such as water, dimethyl methylphosphonate, ethylene oxide or formaldehyde, disrupt the heterodimers formed in the LC, hinting that the phase transition (including spatial-temporal characteristics of the pathway) induced in this class of hydrogen bonded LC may offer the basis of a facile and chemically selective way of reporting the presence of volatile amines. This proposal is supported by exploratory experiments in which we show that it is possible to trigger a phase transition in the LC by exposure to volatile amines emitted from rotting fish. Overall, these results provide new principles for the design of chemoresponsive soft matter based on hydrogen bonded LCs that may find use as the basis of low-cost visual indicators of chemical environments. 
    more » « less
  4. This study examines the structure and stability of filamentary dusty plasmas using data from the Plasmakristall-4 (PK-4) facility on board the International Space Station. Under the action of a polarity-switched DC electric field, the dust particles in the PK-4 discharge have been found to organize into field-aligned extended filaments, which has been compared to the filamentary state in electrorheological (ER) fluids. Here we discuss how, in addition to an ER-type structural transition, the PK-4 dusty plasmas exhibit structural states reminiscent of those observed in liquid crystals (LCs) with rod-shaped molecules. We find that dust particles within the filaments are strongly coupled in a crystalline-like structure, while the coupling of particles across filaments is liquid-like. In addition to a common orientation along a director axis (nematic behavior), the dust filaments also appear to align in large-scale nested structures, or shells (smectic behavior). Finally, these filaments are found to further arrange in hexagonal patterns within the plane orthogonal to the director axis, suggesting the possibility for smectic-B and smectic-C structural states. As the observed ER and LC features of the filamentary dusty plasma states are sensitive to variations in the PK-4 discharge conditions, we argue that these dusty plasmas can provide a controlled analogous system for the study of fundamental phenomena in soft matter, such as the origins of pattern formation and universality of phase transitions. 
    more » « less
  5. We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when per-formed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Whereas O3 and Cl2¬ both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar ini-tial and final optical states of the LCs, we show that a 3-dimensional convolutional neural network (3D CNN) can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures as well as to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces and LCs, and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures us-ing spatiotemporal color fluctuations. 
    more » « less