This Figshare repository contains the datasets and models for our paper titled: Rapid Prediction of Conformationally-Dependent DFT-Level Descriptors using Graph Neural Networks for Carboxylic Acids and Alkyl Amines. It is organized into 2D and 3D, which represent the modeling architectures used in building graph neural networks for molecular descriptors corresponding to acids and amines. Carboxylic acid, primary alkyl amine, and secondary alkyl amine (as well as a combined alkyl amine) libraries are provided in their entirety, including conformer properties. Additional test and external validation statistics for each library are also provided within this repository.
more »
« less
Design of Chemoresponsive Soft Matter Using Hydrogen-Bonded Liquid Crystals
Soft matter that undergoes programmed macroscopic responses to molecular analytes has potential utility in a range of health and safety-related contexts. In this study, we report the design of a nematic liquid crystal (LC) composition that forms through dimerization of carboxylic acids and responds to the presence of vapors of organoamines by undergoing a visually distinct phase transition to an isotropic phase. Specifically, we screened mixtures of two carboxylic acids, 4-butylbenzoic acid and trans-4-pentylcyclohexanecarboxylic acid, and found select compositions that exhibited a nematic phase from 30.6 to 111.7 °C during heating and 110.6 to 3.1 °C during cooling. The metastable nematic phase formed at ambient temperatures was found to be long-lived (>5 days), thus enabling the use of the LC as a chemoresponsive optical material. By comparing experimental infrared (IR) spectra of the LC phase with vibrational frequencies calculated using density functional theory (DFT), we show that it is possible to distinguish between the presence of monomers, homodimers and heterodimers in the mixture, leading us to conclude that a one-to-one heterodimer is the dominant species within this LC composition. Further support for this conclusion is obtained by using differential scanning calorimetry. Exposure of the LC to 12 ppm triethylamine (TEA) triggers a phase transition to an isotropic phase, which we show by IR spectroscopy to be driven by an acid-base reaction, leading to the formation of ammonium carboxylate salts. We characterized the dynamics of the phase transition and found that it proceeds via a characteristic spatiotemporal pathway involving the nucleation, growth, and coalescence of isotropic domains, thus amplifying the atomic-scale acid-base reaction into an information-rich optical output. In contrast to TEA, we determined via both experiment and computation that neither hydrogen bonding donor or acceptor molecules, such as water, dimethyl methylphosphonate, ethylene oxide or formaldehyde, disrupt the heterodimers formed in the LC, hinting that the phase transition (including spatial-temporal characteristics of the pathway) induced in this class of hydrogen bonded LC may offer the basis of a facile and chemically selective way of reporting the presence of volatile amines. This proposal is supported by exploratory experiments in which we show that it is possible to trigger a phase transition in the LC by exposure to volatile amines emitted from rotting fish. Overall, these results provide new principles for the design of chemoresponsive soft matter based on hydrogen bonded LCs that may find use as the basis of low-cost visual indicators of chemical environments.
more »
« less
- PAR ID:
- 10226265
- Date Published:
- Journal Name:
- Materials
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 1055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The title compound, C8H18NO2+·Br−·C8H17NO2, crystallizes as the bromide salt of a 50:50 mixture of (triethylazaniumyl)carboxylic acid and the zwitterionic (triethylazaniumyl)carboxylate. The two organic entities are linked by a half-occupied bridging carboxylic acid hydrogen atom that is hydrogen-bonded to the carboxylate group of the second molecule. The tetralkylammonium group adopts a nearly perfect tetrahedral shape around the nitrogen atom with bond lengths that agree with known values. The carboxylic acid/carboxylate group is orientedantito one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intramolecular C—H...O hydrogen bonds.more » « less
-
Liquid crystal elastomers (LCEs) are composed of rod-like liquid crystal (LC) molecules (mesogens) linked into elastomeric polymer networks. They present a nematic phase with directionally ordered mesogens at room temperature and an isotropic phase with no order at high temperatures, enabling large thermal-induced deformation. As a result, LCEs have become promising candidates for new applications in soft robotics and shape morphing. LCEs are being actively studied in both experiment and theory in recent years. However, the fundamental relationship among synthesis, processing, and thermomechanical behaviors of modern LCEs are still largely unclear. This knowledge gap is further complicated by the various LCE types, including polydomain, monodomain, nematic-genesis, and isotropic-genesis, each fabricated and used under different experimental conditions and applications. Here we explore synthesis-processing-property relationships in thermomechanics of various LCEs, by combining fabrication, characterization, and theoretical modeling. We adapt the widely used two-stage method to fabricate isotropic-genesis polydomain LCEs and nematic-genesis LCEs with varying pre-stretches during polymerization. We characterize the thermal-induced spontaneous deformation and the temperature-dependent uniaxial stress-stretch responses of the LCEs. We identify a new relationship among the soft elasticity, the thermal-induced spontaneous deformation, and the pre-stretch during polymerization, in the LCEs under study. Building on classical theories and our experimental results, we develop a constitutive model to describe the uniaxial behaviors of various LCEs. The theoretical predictions agree well with the experimental results on uniaxial stress-stretch responses at different temperatures. Finally, we discuss the remaining challenges and future opportunities in synthesis-processing-property relationships of LCEs.more » « less
-
Carbohydrate molecules with an alpha-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse alpha-glycosylated carboxylic acids in good yields with high diastereoselectivity. While there is no apparent correlation between reaction conversion and the pKa of carboxylic acids, there is a notable trend in selectivity. Carboxylic acids with a pKa ranging from 4 to 5 exhibit high selectivity, whereas those with a pKa of 2.5 or lower do not display the same level of selectivity. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the alpha-face of the more reactive intermediate, resulting in the formation of alpha-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.more » « less
-
Abstract The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin‐derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω‐transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates. In addition, we compare the performance of these systems in cell‐free and resting whole‐cell biocatalysis formats using the conversion of vanillate to vanillyl amine as model chemistry. We also demonstrate that resting whole cells can be recycled for multiple batch reactions. We used the knowledge gained from this study to produce several amines from carboxylic acid precursors using one‐pot biocatalytic reactions, several of which we report for the first time. These results expand our knowledge of these industrially relevant enzyme families to new substrates and contexts for environmentally friendly and potentially low‐cost synthesis of diverse aryl aldehydes and amines.more » « less
An official website of the United States government

