skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A fast new algorithm for weak graph regularity
Abstract We provide a deterministic algorithm that finds, in ɛ - O (1) n 2 time, an ɛ-regular Frieze–Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ɛ - O (1) many complete bipartite graphs. As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an n-vertex graph G up to an additive error of at most ɛn v(H) , in time ɛ - O H (1) n 2 .  more » « less
Award ID(s):
1855635 1362326
PAR ID:
10178097
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
28
Issue:
5
ISSN:
0963-5483
Page Range / eLocation ID:
777 to 790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Woodruff, David P. (Ed.)
    We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $$\alpha$$ of the graph, in, either, an amortised update time of $$O(\log^2 n \log \alpha)$$, or a worst-case update time of $$O(\log^3 n \log \alpha)$$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $$O(\log n \log \alpha)$$, amortised, or $$O(\log ^2 n \log \alpha)$$, worst-case, for the problem of maintaining an edge-orientation with at most $$O(\alpha + \log n)$$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $$n$$ and $$\alpha$$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $$(1+\varepsilon)$$ approximation of the maximum subgraph density, $$\rho$$, of the dynamic graph. Our algorithms have update times of $$O(\varepsilon^{-6}\log^3 n \log \rho)$$ worst-case, and $$O(\varepsilon^{-4}\log^2 n \log \rho)$$ amortised, respectively. We may output a subgraph $$H$$ of the input graph where its density is a $$(1+\varepsilon)$$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $$O(\varepsilon^{-6}\log ^4 n)$$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $$O(\varepsilon^{-6}\log^3 n \log \alpha)$$ worst-case update time algorithm for maintaining a $$(1~+~\varepsilon)\textnormal{OPT} + 2$$ approximation of the optimal out-orientation of a graph with adaptive arboricity $$\alpha$$, improving the $$O(\varepsilon^{-6}\alpha^2 \log^3 n)$$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $$O(\alpha)$$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $$\Delta+1$$ colouring, and matrix vector multiplication. All update times are worst-case $$O(\alpha+\log^2n \log \alpha)$$, where $$\alpha$$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $$O(\alpha^2 + \log^2 n)$$, and by Neiman and Solomon from STOC 2013 runs in time $$O(\sqrt{m})$$. We give improved running times whenever the arboricity $$\alpha \in \omega( \log n\sqrt{\log\log n})$$. 
    more » « less
  2. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less
  3. Bae, Sang Won; Park, Heejin (Ed.)
    We present an O(n³ g² log g + m) + Õ(n^{ω + 1}) time deterministic algorithm to find the minimum cycle basis of a directed graph embedded on an orientable surface of genus g. This result improves upon the previous fastest known running time of O(m³ n + m² n² log n) applicable to general directed graphs. While an O(n^ω + 2^{2g} n² + m) time deterministic algorithm was known for undirected graphs, the use of the underlying field ℚ in the directed case (as opposed to ℤ₂ for the undirected case) presents extra challenges. It turns out that some of our new observations are useful for both variants of the problem, so we present an O(n^ω + n² g² log g + m) time deterministic algorithm for undirected graphs as well. 
    more » « less
  4. We present a deterministic fully dynamic algorithm with subpolynomial worst-case time per graph update such that after processing each update of the graph, the algorithm outputs a minimum cut of the graph if the graph has a cut of size at most $$c$$ for some $$c = (\log n)^{o(1)}$$. Previously, the best update time was $$\widetilde O(\sqrt{n})$$ for any $c > 2$ and $$c = O(\log n)$$. 
    more » « less
  5. We consider the problem of estimating the spectral density of the normalized adjacency matrix of an $$n$$-node undirected graph. We provide a randomized algorithm that, with $$O(n\epsilon^{-2})$$ queries to a degree and neighbor oracle and in $$O(n\epsilon^{-3})$$ time, estimates the spectrum up to $$\epsilon$$ accuracy in the Wasserstein-1 metric. This improves on previous state-of-the-art methods, including an $$O(n\epsilon^{-7})$$ time algorithm from [Braverman et al., STOC 2022] and, for sufficiently small $$\epsilon$$, a $$2^{O(\epsilon^{-1})}$$ time method from [Cohen-Steiner et al., KDD 2018]. To achieve this result, we introduce a new notion of graph sparsification, which we call \emph{nuclear sparsification}. We provide an $$O(n\epsilon^{-2})$$-query and $$O(n\epsilon^{-2})$$-time algorithm for computing $$O(n\epsilon^{-2})$$-sparse nuclear sparsifiers. We show that this bound is optimal in both its sparsity and query complexity, and we separate our results from the related notion of additive spectral sparsification. Of independent interest, we show that our sparsification method also yields the first \emph{deterministic} algorithm for spectral density estimation that scales linearly with $$n$$ (sublinear in the representation size of the graph). 
    more » « less