skip to main content


Title: A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions
Motivated by connected and automated vehicle (CAV) technologies, this paper proposes a data-driven optimization-based Model Predictive Control (MPC) modeling framework for the Cooperative Adaptive Cruise Control (CACC) of a string of CAVs under uncertain traffic conditions. The proposed data-driven optimization-based MPC modeling framework aims to improve the stability, robustness, and safety of longitudinal cooperative automated driving involving a string of CAVs under uncertain traffic conditions using Vehicle-to-Vehicle (V2V) data. Based on an online learning-based driving dynamics prediction model, we predict the uncertain driving states of the vehicles preceding the controlled CAVs. With the predicted driving states of the preceding vehicles, we solve a constrained Finite-Horizon Optimal Control problem to predict the uncertain driving states of the controlled CAVs. To obtain the optimal acceleration or deceleration commands for the CAVs under uncertainties, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e. a special case of data-driven optimization models under moment bounds) with a Distributionally Robust Chance Constraint (DRCC). The predicted uncertain driving states of the immediately preceding vehicles and the controlled CAVs will be utilized in the safety constraint and the reference driving states of the DRSO-DRCC model. To solve the minimax program of the DRSO-DRCC model, we reformulate the relaxed dual problem as a Semidefinite Program (SDP) of the original DRSO-DRCC model based on the strong duality theory and the Semidefinite Relaxation technique. In addition, we propose two methods for solving the relaxed SDP problem. We use Next Generation Simulation (NGSIM) data to demonstrate the proposed model in numerical experiments. The experimental results and analyses demonstrate that the proposed model can obtain string-stable, robust, and safe longitudinal cooperative automated driving control of CAVs by proper settings, including the driving-dynamics prediction model, prediction horizon lengths, and time headways. Computational analyses are conducted to validate the efficiency of the proposed methods for solving the DRSO-DRCC model for real-time automated driving applications within proper settings.  more » « less
Award ID(s):
1846795
NSF-PAR ID:
10178230
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transportation research
Volume:
138
ISSN:
0191-2615
Page Range / eLocation ID:
144-178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For energy-efficient Connected and Automated Vehicle (CAV) Eco-driving control on signalized arterials under uncertain traffic conditions, this paper explicitly considers traffic control devices (e.g., road markings, traffic signs, and traffic signals) and road geometry (e.g., road shapes, road boundaries, and road grades) constraints in a data-driven optimization-based Model Predictive Control (MPC) modeling framework. This modeling framework uses real-time vehicle driving and traffic signal data via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the MPC-based control model, this paper mathematically formulates location-based traffic control devices and road geometry constraints using the geographic information from High-Definition (HD) maps. The location-based traffic control devices and road geometry constraints have the potential to improve the safety, energy, efficiency, driving comfort, and robustness of connected and automated driving on real roads by considering interrupted flow facility locations and road geometry in the formulation. We predict a set of uncertain driving states for the preceding vehicles through an online learning-based driving dynamics prediction model. We then solve a constrained finite-horizon optimal control problem with the predicted driving states to obtain a set of Eco-driving references for the controlled vehicle. To obtain the optimal acceleration or deceleration commands for the controlled vehicle with the set of Eco-driving references, we formulate a Distributionally Robust Stochastic Optimization (DRSO) model (i.e., a special case of data-driven optimization models under moment bounds) with Distributionally Robust Chance Constraints (DRCC) with location-based traffic control devices and road geometry constraints. We design experiments to demonstrate the proposed model under different traffic conditions using real-world connected vehicle trajectory data and Signal Phasing and Timing (SPaT) data on a coordinated arterial with six actuated intersections on Fuller Road in Ann Arbor, Michigan from the Safety Pilot Model Deployment (SPMD) project. 
    more » « less
  2. Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for cooperative driving automation with combined connectivity and automation technologies to improve string stability. This study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stability for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehicles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a minimum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addition, the constant time headway and the length of control time interval had positive correlation with stability, but the control parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case. 
    more » « less
  3. Real-time control of a fleet of Connected and Automated Vehicles (CAV) for Cooperative Adaptive Cruise Control (CACC) is a challenging problem concerning time delays (from sensing, communication, and computation) and actuator lag. This paper proposes a real-time predictive distributed CACC control framework that addresses time delays and actuator lag issues in the real-time networked control systems. We first formulate a Kalman Filter-based real-time current driving state prediction model to provide more accurate initial conditions for the distributed CACC controller by compensating time delays using sensing data from multi-rate onboard sensors (e.g., Radar, GPS, wheel speed, and accelerometer), and status-sharing and intent-sharing data in BSM via V2V communication. We solve the prediction model using a sequential Kalman Filter update process for multi-rate sensing data to improve computational efficiency. We propose a real-time distributed MPC-based CACC controller with actuator lag and intent-sharing information for each CAV with the delay-compensated predicted current driving states as initial conditions. We implement the real-time predictive distributed CACC control algorithms and conduct numerical analyses to demonstrate the benefits of intent-sharing-based distributed computing, delay compensation, and actuator lag consideration on string stability under various traffic dynamics. 
    more » « less
  4. Abstract

    This article focuses on the development of distributed robust model predictive control (MPC) methods for multiple connected and automated vehicles (CAVs) to ensure their safe operation in the presence of uncertainty. The proposed layered control framework includes reference trajectory generation, distributionally robust obstacle occupancy set computation, distributed state constraint set evaluation, data-driven linear model representation, and robust tube-based MPC design. To enable distributed operation among the CAVs, we present a method, which exploits sampling-based reference trajectory generation and distributed constraint set evaluation methods, that decouples the coupled collision avoidance constraint among the CAVs. This is followed by data-driven linear model representation of the nonlinear system to evaluate the convex equivalent of the nonlinear control problem. Finally, to ensure safe operation in the presence of uncertainty, this article employs a robust tube-based MPC method. For a multiple CAV lane change problem, simulation results show the efficacy of the proposed controller in terms of computational efficiency and the ability to generate safe and smooth CAV trajectories in a distributed fashion.

     
    more » « less
  5. In this paper, we investigated the performance of cooperative adaptive cruise control (CACC) algorithms in mixed traffic environments featuring connected automated vehicles (CAVs) and unconnected vehicles. For CAVs, we tested the recently proposed linear feedback control approach (Linear- CACCu) and adaptive model predictive control approach (A- MPC-CACCu) which have been tailored to extend CACC to mixed traffic environments. In contrast to most literature where CACC design and evaluation are performed on freeways, we focused on urban arterial roads using the CACC Field Operation Test Dataset from the Netherlands. We compared the performances of Linear-CACCu and A-MPC-CACCu to regular adaptive cruise control (ACC), where automated vehicles do not rely on connectivity, as well as human drivers. Performance comparison was done in terms of ego vehicle’s spacing error, acceleration, and energy consumption which relate to safety, driving comfort, and energy efficiency, respectively. Simulation results showed that CACCu algorithms significantly outper- formed the ACC and human drivers in these metrics. Moreover, we found that the fluctuations of the lead vehicle’s behavior due to changes in traffic signal phase have a significant impact on which CACCu is optimal (i.e., A-MPC-CACCu or Linear- CACCu). Thus, the CACC mode could be switched based on the expectation of traffic signal phase changes to assure better performance. 
    more » « less