skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How to Obtain and Run Light and Efficient Deep Learning Networks
As the model size of deep neural networks (DNNs) grows for better performance, the increase in computational cost associated with training and testing makes it extremely difficulty to deploy DNNs on end/edge devices with limited resources while also satisfying the response time requirement. To address this challenge, model compression which compresses model size and thus reduces computation cost is widely adopted in deep learning society. However, the practical impacts of hardware design are often ignored in these algorithm-level solutions, such as the increase of the random accesses to memory hierarchy and the constraints of memory capacity. On the other side, limited understanding about the computational needs at algorithm level may lead to unrealistic assumptions during the hardware designs. In this work, we will discuss this mismatch and provide how our approach addresses it through an interactive design practice across both software and hardware levels.  more » « less
Award ID(s):
1822085 1910299 1717657
PAR ID:
10179377
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The 2019 International Conference on Computer-Aided Design (ICCAD)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have emerged as the most powerful machine learning technique in numerous artificial intelligent applications. However, the large sizes of DNNs make themselves both computation and memory intensive, thereby limiting the hardware performance of dedicated DNN accelerators. In this paper, we propose a holistic framework for energy-efficient high-performance highly-compressed DNN hardware design. First, we propose block-circulant matrix-based DNN training and inference schemes, which theoretically guarantee Big-O complexity reduction in both computational cost (from O(n2) to O(n log n)) and storage requirement (from O(n2) to O(n)) of DNNs. Second, we dedicatedly optimize the hardware architecture, especially on the key fast Fourier transform (FFT) module, to improve the overall performance in terms of energy efficiency, computation performance and resource cost. Third, we propose a design flow to perform hardware-software co-optimization with the purpose of achieving good balance between test accuracy and hardware performance of DNNs. Based on the proposed design flow, two block-circulant matrix-based DNNs on two different datasets are implemented and evaluated on FPGA. The fixed-point quantization and the proposed block-circulant matrix-based inference scheme enables the network to achieve as high as 3.5 TOPS computation performance and 3.69 TOPS/W energy efficiency while the memory is saved by 108X ~ 116X with negligible accuracy degradation. 
    more » « less
  2. Deep learning that utilizes large-scale deep neural networks (DNNs) is effective in automatic high-level feature extraction but also computation and memory intensive. Constructing DNNs using block-circulant matrices can simultaneously achieve hardware acceleration and model compression while maintaining high accuracy. This paper proposes HSIM-DNN, an accurate hardware simulator on the C++ platform, to simulate the exact behavior of DNN hardware implementations and thereby facilitate the block-circulant matrix-based design of DNN training and inference procedures in hardware. Real FPGA implementations validate the simulator with various circulant block sizes and data bit lengths taking into account accuracy, compression ratio and power consumption, which provides excellent insights for hardware design. 
    more » « less
  3. Deep Neural Networks (DNNs) are pervasively applied in many artificial intelligence (AI) applications. The high performance of DNNs comes at the cost of larger size and higher compute complexity. Recent studies show that DNNs have much redundancy, such as the zero-value parameters and excessive numerical precision. To reduce computing complexity, many redundancy reduction techniques have been proposed, including pruning and data quantization. In this paper, we demonstrate our cooptimization of the DNN algorithm and hardware which exploits the model redundancy to accelerate DNNs. 
    more » « less
  4. Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet). 
    more » « less
  5. Deep neural networks (DNNs) emerge as a key component in various applications. However, the ever-growing DNN size hinders efficient processing on hardware. To tackle this problem, on the algorithmic side, compressed DNN models are explored, of which block-circulant DNN models are memory efficient and hardware-friendly; on the hardware side, resistive random-access memory (ReRAM) based accelerators are promising for in-situ processing of DNNs. In this work, we design an accelerator named ReBoc for accelerating block-circulant DNNs in ReRAM to reap the benefits of light-weight models and efficient in-situ processing simultaneously. We propose a novel mapping scheme which utilizes Horizontal Weight Slicing and Intra-Crossbar Weight Duplication to map block-circulant DNN models onto ReRAM crossbars with significant improved crossbar utilization. Moreover, two specific techniques, namely Input Slice Reusing and Input Tile Sharing are introduced to take advantage of the circulant calculation feature in block- circulant DNNs to reduce data access and buffer size. In REBOC, a DNN model is executed within an intra-layer processing pipeline and achieves respectively 96× and 8.86× power efficiency improvement compared to the state-of-the-art FPGA and ASIC accelerators for block-circulant neural networks. Compared to ReRAM-based DNN accelerators, REBOC achieves averagely 4.1× speedup and 2.6× energy reduction. 
    more » « less