skip to main content


Title: How smart your smartphone is in lie detection?
Lying is a (practically) unavoidable component of our day to day interactions with other people, and it includes both oral and textual communications (e.g. text entered via smartphones). Detecting when a person is lying has important applications, especially with the ubiquity of messaging via smart-phones, coupled with rampant increases in (intentional) spread of mis-information today. In this paper, we design a technique to detect whether or not a person's textual inputs when typed via a smartphone indicate lying. To do so, first, we judiciously develop a smartphone based survey that guarantees any participant to provide a mix of true and false responses. While the participant is texting out responses to each question, the smartphone measures readings from its inbuilt inertial sensors, and then computes features like shaking, acceleration, tilt angle, typing speed etc. experienced by it. Subsequently, for each participant (47 in total), we glean the true and false responses using our own experiences with them, and also via informal discussions with each participant. By comparing the responses of each participant, along with the corresponding motion features computed by the smartphone, we implement several machine learning algorithms to detect when a participant is lying, and our accuracy is around 70% in the most stringent leave-one-out evaluation strategy. Later, utilizing findings of our analysis, we develop an architecture for real-time lie detection using smartphones. Yet another user evaluation of our lie detection system yields 84%-90% accuracy in detecting false responses.  more » « less
Award ID(s):
1718071
PAR ID:
10179456
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MobiQuitous '19: Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
Page Range / eLocation ID:
338 to 347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative. 
    more » « less
  2. The presence of middle ear fluid is a key diagnostic marker for two of the most common pediatric ear diseases: acute otitis media and otitis media with effusion. We present an accessible solution that uses speakers and microphones within existing smartphones to detect middle ear fluid by assessing eardrum mobility. We conducted a clinical study on 98 patient ears at a pediatric surgical center. Using leave-one-out cross-validation to estimate performance on unseen data, we obtained an area under the curve (AUC) of 0.898 for the smartphone-based machine learning algorithm. In comparison, commercial acoustic reflectometry, which requires custom hardware, achieved an AUC of 0.776. Furthermore, we achieved 85% sensitivity and 82% specificity, comparable to published performance measures for tympanometry and pneumatic otoscopy. Similar results were obtained when testing across multiple smartphone platforms. Parents of pediatric patients ( n = 25 ears) demonstrated similar performance to trained clinicians when using the smartphone-based system. These results demonstrate the potential for a smartphone to be a low-barrier and effective screening tool for detecting the presence of middle ear fluid. 
    more » « less
  3. The human ability to deceive others and detect deception has long been tied to theory of mind. We make a stronger argument: in order to be adept liars – to balance gain (i.e. maximizing their own reward) and plausibility (i.e. maintaining a realistic lie) – humans calibrate their lies under the assumption that their partner is a rational, utility-maximizing agent. We develop an adversarial recursive Bayesian model that aims to formalize the behaviors of liars and lie detectors. We compare this model to (1) a model that does not perform theory of mind computations and (2) a model that has perfect knowledge of the opponent’s behavior. To test these models, we introduce a novel dyadic, stochastic game, allowing for quantitative measures of lies and lie detection. In a second experiment, we vary the ground truth probability. We find that our rational models qualitatively predict human lying and lie detecting behavior better than the non-rational model. Our findings suggest that humans control for the extremeness of their lies in a manner reflective of rational social inference. These findings provide a new paradigm and formal framework for nuanced quantitative analysis of the role of rationality and theory of mind in lying and lie detecting behavior. 
    more » « less
  4. IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less
  5. He, J. ; Palpanas, T. ; Wang, W. (Ed.)
    IoT devices fundamentally lack built-in security mechanisms to protect themselves from security attacks. Existing works on improving IoT security mostly focus on detecting anomalous behaviors of IoT devices. However, these existing anomaly detection schemes may trigger an overwhelmingly large number of false alerts, rendering them unusable in detecting compromised IoT devices. In this paper we develop an effective and efficient framework, named CUMAD, to detect compromised IoT devices. Instead of directly relying on individual anomalous events, CUMAD aims to accumulate sufficient evidence in detecting compromised IoT devices, by integrating an autoencoder-based anomaly detection subsystem with a sequential probability ratio test (SPRT)-based sequential hypothesis testing subsystem. CUMAD can effectively reduce the number of false alerts in detecting compromised IoT devices, and moreover, it can detect compromised IoT devices quickly. Our evaluation studies based on the public-domain N-BaIoT dataset show that CUMAD can on average reduce the false positive rate from about 3.57% using only the autoencoder-based anomaly detection scheme to about 0.5%; in addition, CUMAD can detect compromised IoT devices quickly, with less than 5 observations on average. 
    more » « less