Abstract One-dimensional persistent homology is arguably the most important and heavily used computational tool in topological data analysis. Additional information can be extracted from datasets by studying multi-dimensional persistence modules and by utilizing cohomological ideas, e.g. the cohomological cup product. In this work, given a single parameter filtration, we investigate a certain 2-dimensional persistence module structure associated with persistent cohomology, where one parameter is the cup-length$$\ell \ge 0$$ and the other is the filtration parameter. This new persistence structure, called thepersistent cup module, is induced by the cohomological cup product and adapted to the persistence setting. Furthermore, we show that this persistence structure is stable. By fixing the cup-length parameter$$\ell $$ , we obtain a 1-dimensional persistence module, called the persistent$$\ell $$ -cup module, and again show it is stable in the interleaving distance sense, and study their associated generalized persistence diagrams. In addition, we consider a generalized notion of apersistent invariant, which extends both therank invariant(also referred to aspersistent Betti number), Puuska’s rank invariant induced by epi-mono-preserving invariants of abelian categories, and the recently-definedpersistent cup-length invariant, and we establish their stability. This generalized notion of persistent invariant also enables us to lift the Lyusternik-Schnirelmann (LS) category of topological spaces to a novel stable persistent invariant of filtrations, called thepersistent LS-category invariant.
more »
« less
Spatiotemporal Persistent Homology for Dynamic Metric Spaces
Characterizing the dynamics of time-evolving data within the framework of topological data analysis (TDA) has been attracting increasingly more attention. Popular instances of time-evolving data include flocking/swarming behaviors in animals and social networks in the human sphere. A natural mathematical model for such collective behaviors is a dynamic point cloud, or more generally a dynamic metric space (DMS). In this paper we extend the Rips filtration stability result for (static) metric spaces to the setting of DMSs. We do this by devising a certain three-parameter “spatiotemporal” filtration of a DMS. Applying the homology functor to this filtration gives rise to multidimensional persistence module derived from the DMS. We show that this multidimensional module enjoys stability under a suitable generalization of the Gromov–Hausdorff distance which permits metrization of the collection of all DMSs. On the other hand, it is recognized that, in general, comparing two multidimensional persistence modules leads to intractable computational problems. For the purpose of practical comparison of DMSs, we focus on both the rank invariant or the dimension function of the multidimensional persistence module that is derived from a DMS. We specifically propose to utilize a certain metric d for comparing these invariants: In our work this d is either (1) a certain generalization of the erosion distance by Patel, or (2) a specialized version of the well-known interleaving distance. In either case, the metric d can be computed in polynomial time.
more »
« less
- PAR ID:
- 10179469
- Date Published:
- Journal Name:
- Discrete & Computational Geometry
- ISSN:
- 0179-5376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Gromov–Wasserstein distance—a generalization of the usual Wasserstein distance—permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov–Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov–Wasserstein distance, we determine the precise value of a certain variant of the Gromov–Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}^{\infty }$$ of Gromov–Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameterspandqand the metric of the underlying spaces, we are able to determine the exact value of the distance$$d_{{{\text {GW}}}4,2}$$ between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.more » « less
-
Abstract We study a generalization of the classical multidimensional scaling procedure (cMDS) which is applicable in the setting of metric measure spaces. Metric measure spaces can be seen as natural ‘continuous limits’ of finite data sets. Given a metric measure space $${\mathcal{X}} = (X,d_{X},\mu _{X})$$, the generalized cMDS procedure involves studying an operator which may have infinite rank, a possibility which leads to studying its traceability. We establish that several continuous exemplar metric measure spaces such as spheres and tori (both with their respective geodesic metrics) induce traceable cMDS operators, a fact which allows us to obtain the complete characterization of the metrics induced by their resulting cMDS embeddings. To complement this, we also exhibit a metric measure space whose associated cMDS operator is not traceable. Finally, we establish the stability of the generalized cMDS method with respect to the Gromov–Wasserstein distance.more » « less
-
null (Ed.)Let K be an inversive difference-differential field and L a (not necessarily inversive) finitely generated difference-differential field extension of K. We consider the natural filtration of the extension L/K associated with a finite system \eta of its difference-differential generators and prove that for any intermediate difference-differential field F, the transcendence degrees of the components of the induced filtration of F are expressed by a certain numerical polynomial \chi_{K, F,\eta}(t). This polynomial is closely connected with the dimension Hilbert-type polynomial of a submodule of the module of K\"ahler differentials $\Omega_{L^{\ast}|K} where L^{\ast} is the inversive closure of L. We prove some properties of polynomials \chi_{K, F,\eta}(t) and use them for the study of the Krull-type dimension of the extension L/K. In the last part of the paper, we present a generalization of the obtained results to multidimensional filtrations of L/K associated with partitions of the sets of basic derivations and translations.more » « less
-
Buchin, Kevin and (Ed.)We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram of the distance to a point set in ℝ^d. Whereas the full Delaunay complex can be used to compute this persistence diagram exactly, it may have size O(n^⌈d/2⌉). In contrast, our construction uses only O(n) simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by considering the flips in an incremental construction as simplices in d+1 dimensions. This approach leads to a very simple and straightforward proof of correctness in geometric terms, because the final filtration is dual to a (d+1)-dimensional Voronoi construction similar to the standard Delaunay filtration. We also, show how this complex can be efficiently constructed.more » « less
An official website of the United States government

