Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is βstretch if π is a simple (nonselfintersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P , the length of the subcurve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the βstretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a βstretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in amore »
Drawing Shortest Paths in Geodetic Graphs
Motivated by the fact that in a space where shortest paths are unique, no two shortest paths meet twice, we study a question posed by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in which the shortest path between any pair of vertices is unique, is there a philogeodetic drawing of G, i.e., a drawing of G in which the curves of any two shortest paths meet at most once? We answer this question in the negative by showing the existence of geodetic graphs that require some pair of shortest paths to cross at least four times. The bound on the number of crossings is tight for the class of graphs we construct. Furthermore, we exhibit geodetic graphs of diameter two that do not admit a philogeodetic drawing.
 Publication Date:
 NSFPAR ID:
 10179482
 Journal Name:
 28th International Symposium on Graph Drawing and Network Visualization (GD)
 Sponsoring Org:
 National Science Foundation
More Like this


Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimumcost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multilevel graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multilevel graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size O(EV 2) for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomialsize ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.

Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "onthefly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sublinear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the ErdösRényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous localaccess implementations for random graphs, we support VertexPair and NextNeighbor queries. In addition, we introduce a new RandomNeighbor query. Next, we give the first localaccess implementation for AllNeighbors queries inmore »

A graph G is called {\em selfordered} (a.k.a asymmetric) if the identity permutation is its only automorphism. Equivalently, there is a unique isomorphism from G to any graph that is isomorphic to G. We say that G=(VE) is {\em robustly selfordered}if the size of the symmetric difference between E and the edgeset of the graph obtained by permuting V using any permutation :VV is proportional to the number of nonfixedpoints of . In this work, we initiate the study of the structure, construction and utility of robustly selfordered graphs. We show that robustly selfordered boundeddegree graphs exist (in abundance), and that they can be constructed efficiently, in a strong sense. Specifically, given the index of a vertex in such a graph, it is possible to find all its neighbors in polynomialtime (i.e., in time that is polylogarithmic in the size of the graph). We provide two very different constructions, in tools and structure. The first, a direct construction, is based on proving a sufficient condition for robust selfordering, which requires that an auxiliary graph, on {\em pairs} of vertices of the original graph, is expanding. In this case the original graph is (not only robustly selfordered but) also expanding. Themore »

We present a new technique for efficiently removing almost all short cycles in a graph without unintentionally removing its triangles. Consequently, triangle finding problems do not become easy even in almost kcycle free graphs, for any constant k≥ 4. Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation problems, and the existence of many 4 or 5cycles in a worstcase instance had been the obstacle towards resolving major open questions. Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable time bounds only achieve superconstant approximation factors, while only 3− factors were conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1) approximations are possible, assuming the 3SUM or APSP conjectures. In particular, we prove that kapproximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower bound holds even for the offline version where we are given the queries in advance, and extends to other problems such as dynamic shortest paths. The 4Cycle problem: An infamous open question in finegrained complexity is to establish any surprising consequences from amore »