skip to main content


Title: Simple Topological Drawings of k-Planar Graphs.
Every finite graph admits a simple (topological) drawing, that is, a drawing where every pair of edges intersects in at most one point. However, in combination with other restrictions simple drawings do not universally exist. For instance, k-planar graphs are those graphs that can be drawn so that every edge has at most k crossings (i.e., they admit a k-plane drawing). It is known that for k≤3 , every k-planar graph admits a k-plane simple drawing. But for k≥4 , there exist k-planar graphs that do not admit a k-plane simple drawing. Answering a question by Schaefer, we show that there exists a function Open image in new window such that every k-planar graph admits an f(k)-plane simple drawing, for all Open image in new window. Note that the function f depends on k only and is independent of the size of the graph. Furthermore, we develop an algorithm to show that every 4-planar graph admits an 8-plane simple drawing.  more » « less
Award ID(s):
1800734
NSF-PAR ID:
10253548
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Graph Drawing and Network Visualization
Volume:
12590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A long-standing conjecture by Kotzig, Ringel, and Rosa states that every tree admits a graceful labeling. That is, for any tree $T$ with $n$~edges, it is conjectured that there exists a labeling $f\colon V(T) \to \{0,1,\ldots,n\}$ such that the set of induced edge labels $\bigl\{ |f(u)-f(v)| : \{u,v\}\in E(T) \bigr\}$ is exactly $\{1,2,\ldots,n\}$. We extend this concept to allow for multigraphs with edge multiplicity at most~$2$. A \emph{2-fold graceful labeling} of a graph (or multigraph) $G$ with $n$~edges is a one-to-one function $f\colon V(G) \to \{0,1,\ldots,n\}$ such that the multiset of induced edge labels is comprised of two copies of each element in $\bigl\{ 1,2,\ldots, \lfloor n/2 \rfloor \bigr\}$ and, if $n$ is odd, one copy of $\bigl\{ \lceil n/2 \rceil \bigr\}$. When $n$ is even, this concept is similar to that of 2-equitable labelings which were introduced by Bloom and have been studied for several classes of graphs. We show that caterpillars, cycles of length $n \not\equiv 1 \pmod{4}$, and complete bipartite graphs admit 2-fold graceful labelings. We also show that under certain conditions, the join of a tree and an empty graph (i.e., a graph with vertices but no edges) is $2$-fold graceful. 
    more » « less
  2. We introduce and study the 1-planar packing problem: Given k graphs with n vertices 𝐺1,…,𝐺𝑘, find a 1-planar graph that contains the given graphs as edge-disjoint spanning subgraphs. We mainly focus on the case when each 𝐺𝑖 is a tree and 𝑘=3 . We prove that a triple consisting of three caterpillars or of two caterpillars and a path may not admit a 1-planar packing, while two paths and a special type of caterpillar always have one. We then study 1-planar packings with few crossings and prove that three paths (resp. cycles) admit a 1-planar packing with at most seven (resp. fourteen) crossings. We finally show that a quadruple consisting of three paths and a perfect matching with 𝑛≥12 vertices admits a 1-planar packing, while such a packing does not exist if 𝑛≤10 . 
    more » « less
  3. Knot and link diagrams are projections of one or more 3-dimensional simple closed curves into lR2, such that no more than two points project to the same point in lR2. These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth curves in lR3, so their projections should be smooth curves in lR2 with good continuity and large crossing angles: exactly the properties of Lombardi graph drawings (defned by circular-arc edges and perfect angular resolution). We show that several knots do not allow crossing-minimal plane Lombardi drawings. On the other hand, we identify a large class of 4-regular plane multigraphs that do have plane Lombardi drawings. We then study two relaxations of Lombardi drawings and show that every knot admits a crossing-minimal plane 2-Lombardi drawing (where edges are composed of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as a plane Lombardi drawing when relaxing the angular resolution requirement by an arbitrary small angular offset ε, while maintaining a 180◦ angle between opposite edges. 
    more » « less
  4. We initiate the study of Simultaneous Graph Embedding with Fixed Edges in the beyond planarity framework. In the QSEFE problem, we allow edge crossings, as long as each graph individually is drawn quasiplanar, that is, no three edges pairwise cross. %We call this problem the QSEFE problem. We show that a triple consisting of two planar graphs and a tree admit a QSEFE. This result also implies that a pair consisting of a 1-planar graph and a planar graph admits a QSEFE. We show several other positive results for triples of planar graphs, in which certain structural properties for their common subgraphs are fulfilled. For the case in which simplicity is also required, we give a triple consisting of two quasiplanar graphs and a star that does not admit a QSEFE. Moreover, in contrast to the planar SEFE problem, we show that it is not always possible to obtain a QSEFE for two matchings if the quasiplanar drawing of one matching is fixed. 
    more » « less
  5. In Lombardi drawings of graphs, edges are represented as circular arcs and the edges incident on vertices have perfect angular resolution. It is known that not every planar graph has a planar Lombardi drawing. We give an example of a planar 3-tree that has no planar Lombardi drawing and we show that all outerpaths do have a planar Lombardi drawing. Further, we show that there are graphs that do not even have any Lombardi drawing at all. With this in mind, we generalize the notion of Lombardi drawings to that of (smooth) k-Lombardi drawings, in which each edge may be drawn as a (differentiable) sequence of k circular arcs; we show that every graph has a smooth 2-Lombardi drawing and every planar graph has a smooth planar 3-Lombardi drawing. We further investigate related topics connecting planarity and Lombardi drawings. 
    more » « less