skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing β-Stretch Paths in Drawings of Graphs
Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P , the length of the sub-curve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs a β-stretch path between s and t, if a (1 − ε)β-stretch path between s and t exists in the drawing.  more » « less
Award ID(s):
1712119 1740858
PAR ID:
10179493
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meka, Raghu (Ed.)
    Given a weighted graph G = (V,E,w), a (β, ε)-hopset H is an edge set such that for any s,t ∈ V, where s can reach t in G, there is a path from s to t in G ∪ H which uses at most β hops whose length is in the range [dist_G(s,t), (1+ε)dist_G(s,t)]. We break away from the traditional question that asks for a hopset H that achieves small |H| and small diameter β and instead study the sensitivity of H, a new quality measure. The sensitivity of a vertex (or edge) given a hopset H is, informally, the number of times a single hop in G ∪ H bypasses it; a bit more formally, assuming shortest paths in G are unique, it is the number of hopset edges (s,t) ∈ H such that the vertex (or edge) is contained in the unique st-path in G having length exactly dist_G(s,t). The sensitivity associated with H is then the maximum sensitivity over all vertices (or edges). The highlights of our results are: - A construction for (Õ(√n), 0)-hopsets on undirected graphs with O(log n) sensitivity, complemented with a lower bound showing that Õ(√n) is tight up to polylogarithmic factors for any construction with polylogarithmic sensitivity. - A construction for (n^o(1), ε)-hopsets on undirected graphs with n^o(1) sensitivity for any ε > 0 that is at least inverse polylogarithmic, complemented with a lower bound on the tradeoff between β, ε, and the sensitivity. - We define a notion of sensitivity for β-shortcut sets (which are the reachability analogues of hopsets) and give a construction for Õ(√n)-shortcut sets on directed graphs with O(log n) sensitivity, complemented with a lower bound showing that β = Ω̃(n^{1/3}) for any construction with polylogarithmic sensitivity. We believe hopset sensitivity is a natural measure in and of itself, and could potentially find use in a diverse range of contexts. More concretely, the notion of hopset sensitivity is also directly motivated by the Differentially Private All Sets Range Queries problem [Deng et al. WADS 23]. Our result for O(log n) sensitivity (Õ(√n), 0)-hopsets on undirected graphs immediately improves the current best-known upper bound on utility from Õ(n^{1/3}) to Õ(n^{1/4}) in the pure-DP setting, which is tight up to polylogarithmic factors. 
    more » « less
  2. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    The k-Detour problem is a basic path-finding problem: given a graph G on n vertices, with specified nodes s and t, and a positive integer k, the goal is to determine if G has an st-path of length exactly dist(s,t) + k, where dist(s,t) is the length of a shortest path from s to t. The k-Detour problem is NP-hard when k is part of the input, so researchers have sought efficient parameterized algorithms for this task, running in f(k)poly(n) time, for f(⋅) as slow-growing as possible. We present faster algorithms for k-Detour in undirected graphs, running in 1.853^k poly(n) randomized and 4.082^kpoly(n) deterministic time. The previous fastest algorithms for this problem took 2.746^k poly(n) randomized and 6.523^k poly(n) deterministic time [Bezáková-Curticapean-Dell-Fomin, ICALP 2017]. Our algorithms use the fact that detecting a path of a given length in an undirected graph is easier if we are promised that the path belongs to what we call a "bipartitioned" subgraph, where the nodes are split into two parts and the path must satisfy constraints on those parts. Previously, this idea was used to obtain the fastest known algorithm for finding paths of length k in undirected graphs [Björklund-Husfeldt-Kaski-Koivisto, JCSS 2017], intuitively by looking for paths of length k in randomly bipartitioned subgraphs. Our algorithms for k-Detour stem from a new application of this idea, which does not involve choosing the bipartitioned subgraphs randomly. Our work has direct implications for the k-Longest Detour problem, another related path-finding problem. In this problem, we are given the same input as in k-Detour, but are now tasked with determining if G has an st-path of length at least dist(s,t)+k. Our results for k-Detour imply that we can solve k-Longest Detour in 3.432^k poly(n) randomized and 16.661^k poly(n) deterministic time. The previous fastest algorithms for this problem took 7.539^k poly(n) randomized and 42.549^k poly(n) deterministic time [Fomin et al., STACS 2022]. 
    more » « less
  3. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, P, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to P in sublinear time. Since there is evidence that this is impossible for query curves of length Θ(n^α), for any α > 0, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair u,v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the segment and any (u,v)-path in G. The answer is exact, if t = 1, and approximate if t > 1. 
    more » « less
  4. Given a set S of n points in the plane and a parameter ε>0, a Euclidean (1+ε) -spanner is a geometric graph G=(S,E) that contains a path of weight at most (1+ε)∥pq∥2 for all p,q∈S . We show that the minimum weight of a Euclidean (1+ε)-spanner for n points in the unit square [0,1]2 is O(ε−3/2n−−√), and this bound is the best possible. The upper bound is based on a new spanner algorithm that sparsifies Yao-graphs. It improves upon the baseline O(ε−2n−−√), obtained by combining a tight bound for the weight of an MST and a tight bound for the lightness of Euclidean (1+ε)-spanners, which is the ratio of the spanner weight to the weight of the MST. The result generalizes to d-space for all d∈N : The minimum weight of a Euclidean (1+ε)-spanner for n points in the unit cube [0,1]d is Od(ε(1−d2)/dn(d−1)/d), and this bound is the best possible. For the n×n section of the integer lattice, we show that the minimum weight of a Euclidean (1+ε)-spanner is between Ω(ε−3/4n2) and O(ε−1log(ε−1)n2). These bounds become Ω(ε−3/4n−−√) and O(ε−1log(ε−1)n−−√) when scaled to a grid of n points in [0,1]2. . 
    more » « less
  5. Santhanam, Rahul (Ed.)
    {"Abstract":["A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-t program generating a given string x is at most s.\r\nIn this work, we consider the more "robust" version of the time-bounded Kolmogorov complexity problem, referred to as the GapMINKT problem, where given a size bound s and a running time bound t, the goal is to determine whether there exists a poly(t,|x|)-time program of length s+O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for the GapMINKT problem; R has a running-time bound of 2^{ε n} for any ε > 0 and additionally only queries its oracle on "thresholds" s of size s+O(log |x|). As such, we get that any algorithm with running-time (resp. circuit size) 2^{α s} poly(|x|,t,s) for solving GapMINKT (given an instance (x,t,s), yields an algorithm for finding a witness with running-time (resp. circuit size) 2^{(α+ε) s} poly(|x|,t,s).\r\nOur second result is a polynomial-time search-to-decision reduction for the time-bounded Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown by Liu and Pass (FOCS'20), heavily relying on cryptographic techniques. Our reduction is more direct and additionally has the advantage of being length-preserving, and as such also applies in the exponential time/size regime.\r\nA central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of Information Theorem."]} 
    more » « less