skip to main content


Title: Stress-Plus-X (SPX) Graph Layout
Stress, edge crossings, and crossing angles play an important role in the quality and readability of graph drawings. Most standard graph drawing algorithms optimize one of these criteria which may lead to layouts that are deficient in other criteria. We introduce an optimization framework, Stress-Plus-X (SPX), that simultaneously optimizes stress together with several other criteria: edge crossings, minimum cross- ing angle, and upwardness (for directed acyclic graphs). SPX achieves results that are close to the state-of-the-art algorithms that optimize these metrics individually. SPX is flexible and extensible and can optimize a subset or all of these criteria simultaneously. Our experimental analysis shows that our joint optimization approach is successful in drawing graphs with good performance across readability criteria.  more » « less
Award ID(s):
1839274
NSF-PAR ID:
10179545
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
27th International Symposium on Graph Drawing and Network Visualization (GD)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Graph Drawing via Gradient Descent, (GD)^2, that can handle multiple readability criteria. (GD)^2 can optimize any criterion that can be described by a smooth function. If the criterion cannot be captured by a smooth function, a non-smooth function for the criterion is combined with another smooth function, or auto-differentiation tools are used for the optimization. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of (GD)^2 with experimental data and a functional prototype: http://hdc.cs.arizona.edu/~mwli/graph-drawing/ 
    more » « less
  2. Graph layout algorithms strive to improve the utility of node-link visualizations or graph drawings by optimizing for readability criteria. One such criteria that has been widely used is to count edge crossings. Prior work has focused solely on minimizing the number of edge crossings, including provably-optimal layout algorithms for layered graphs. The research community has completely ignored the other side of the coin — can we optimally maximize edge crossings? This paper answers this question in the affirmative. Our WORSTisfimal layout algorithm produces the most unreadable layered graph drawing. It does so by using linear programming to produce a provably-optimally-awful solution. We hope that this groundbreaking result opens up an entirely new field of inquiry for graph drawing researchers — optimally-worst layout algorithms. 
    more » « less
  3. Any graph drawing can be characterised by a range of computational aesthetic metrics. For example, a given drawing might be described as having eight crossings, a mean angular resolution of 0.34, and an edge orthogonality value of 0.72. However, without knowing the distribution of these metrics it is hard to compare the quality of drawings of different graphs, nor know whether a given drawing is typical or an outlier within the space of all possible drawings. This paper explores the range and distribution of ten normalised graph drawing layout metrics, based on graphs created by six graph generation algorithms and drawings created by six popular layout algorithms. We include the “Rome" and “North" graph repositories in our analysis. Our exploration of the multi-dimensional aesthetics space allows for comparisons between the graph drawing algorithms, highlighting those that cover larger or smaller volumes of the aesthetics space. We calculate the correlation coefficients between the metrics, indicating those that may conflict with each other (negatively correlated), and those that may be redundant (positively correlated). Our results will be useful as the basis for simulated annealing or gradient descent layout algorithms, for identifying the best layout algorithms for producing a specified combination and range of aesthetics, and for informing experimental controls in human empirical studies. 
    more » « less
  4. null (Ed.)
    Every finite graph admits a simple (topological) drawing, that is, a drawing where every pair of edges intersects in at most one point. However, in combination with other restrictions simple drawings do not universally exist. For instance, k-planar graphs are those graphs that can be drawn so that every edge has at most k crossings (i.e., they admit a k-plane drawing). It is known that for k≤3 , every k-planar graph admits a k-plane simple drawing. But for k≥4 , there exist k-planar graphs that do not admit a k-plane simple drawing. Answering a question by Schaefer, we show that there exists a function Open image in new window such that every k-planar graph admits an f(k)-plane simple drawing, for all Open image in new window. Note that the function f depends on k only and is independent of the size of the graph. Furthermore, we develop an algorithm to show that every 4-planar graph admits an 8-plane simple drawing. 
    more » « less
  5. We initiate the study of Simultaneous Graph Embedding with Fixed Edges in the beyond planarity framework. In the QSEFE problem, we allow edge crossings, as long as each graph individually is drawn quasiplanar, that is, no three edges pairwise cross. %We call this problem the QSEFE problem. We show that a triple consisting of two planar graphs and a tree admit a QSEFE. This result also implies that a pair consisting of a 1-planar graph and a planar graph admits a QSEFE. We show several other positive results for triples of planar graphs, in which certain structural properties for their common subgraphs are fulfilled. For the case in which simplicity is also required, we give a triple consisting of two quasiplanar graphs and a star that does not admit a QSEFE. Moreover, in contrast to the planar SEFE problem, we show that it is not always possible to obtain a QSEFE for two matchings if the quasiplanar drawing of one matching is fixed. 
    more » « less