Two-dimensional (2D) materials assembled into van der Waals (vdW) heterostructures contain unlimited combinations of mechanical, optical, and electrical properties that can be harnessed for potential device applications. Critically, these structures require control over interfacial adhesion for enabling their construction and have enough integrity to survive industrial fabrication processes upon their integration. Here, we promptly determine the adhesion quality of various exfoliated 2D materials on conventional SiO 2 /Si substrates using ultrasonic delamination threshold testing. This test allows us to quickly infer relative substrate adhesion based on the percent area of 2D flakes that survive a fixed time in an ultrasonic bath, allowing for control over process parameters that yield high or poor adhesion. We leverage this control of adhesion to optimize the vdW heterostructure assembly process, where we show that samples with high or low substrate adhesion relative to each other can be used selectively to construct high-throughput vdW stacks. Instead of tuning the adhesion of polymer stamps to 2D materials with constant 2D-substrate adhesion, we tune the 2D-substrate adhesion with constant stamp adhesion to 2D materials. The polymer stamps may be reused without any polymer melting steps, thus avoiding high temperatures (<120 °C) and allowing for high-throughput production. We show that this procedure can be used to create high-quality 2D twisted bilayer graphene on SiO 2 /Si, characterized with atomic force microscopy and Raman spectroscopic mapping, as well as low-angle twisted bilayer WSe 2 on h-BN/SiO 2 /Si, where we show direct real-space visualization of moiré reconstruction with tilt-angle dependent scanning electron microscopy. 
                        more » 
                        « less   
                    
                            
                            Chemical Vapor Growth of Silicon Phosphide Nanostructures
                        
                    
    
            ABSTRACT In the search for chemically stable two-dimensional (2D) materials with high in-plane mobility, proper bandgap, and compatibility with vapor-based fabrication, van der Waals semiconductor SiP has become a potential candidate as a robust variation of black phosphorous. While bulk SiP crystals were synthesized in the 1970s, the vapor-based synthesis of SiP nanostructures or thin films is still absent. We here report the first chemical vapor growth of SiP nanostructures on SiO 2 /Si substrate. SiP islands with lateral size up to 20 μm and showing well-defined Raman signals were grown on SiO 2 /Si substrate or on SiP-containing concentric rings. The presence of SiP phase is confirmed by XRD. The formation of rings and islands is explained by a multiple coffee ring growth model where a dynamic fluctuation of droplet growth front induces the topography of concentric ring surfaces. This new growth method might shed light on the controlled growth of group IV-III high-mobility 2D semiconductors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1706815
- PAR ID:
- 10179585
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 5
- Issue:
- 31-32
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 1653 to 1660
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Monolayer (ML) molybdenum disulfide (MoS₂) is a novel 2-dimensional (2D) semiconductor whose properties have many applications in devices. Despite its potential, ML MoS₂ is limited in its use due to its degradation under exposure to ambient air. Therefore, studies of possible degradation prevention methods are important. It is well established that air humidity plays a major role in the degradation. In this paper, we investigate the effects of substrate hydrophobicity on the degradation of chemical vapor deposition (CVD) grown ML MoS 2 . We use optical microscopy, atomic force microscopy (AFM), and Raman mapping to investigate the degradation of ML MoS 2 grown on SiO 2 and Si 3 N 4 that are hydrophilic and hydrophobic substrates, respectively. Our results show that the degradation of ML MoS₂ on Si 3 N 4 is significantly less than the degradation on SiO 2 . These results show that using hydrophobic substrates to grow 2D transition metal dichalcogenide ML materials may diminish ambient degradation and enable improved protocols for device manufacturing.more » « less
- 
            While progress has been made in design optimization of concentric ring electrodes maximizing the accuracy of the surface Laplacian estimation, it was based exclusively on the negligible dimensions model of the electrode. Recent proof of concept of the new finite dimensions model that adds the radius of the central disc and the widths of concentric rings to the previously included number of rings and inter-ring distances provides an opportunity for more comprehensive design optimization. In this study, the aforementioned proof of concept was developed into a framework allowing direct comparison of any two concentric ring electrodes of the same size and with the same number of rings. The proposed framework is illustrated on constant and linearly increasing inter-ring distances tripolar concentric ring electrode configurations and validated on electrocardiograms from 20 human volunteers. In particular, ratios of truncation term coefficients between the two electrode configurations were used to demonstrate the similarity between the negligible and the finite dimension models analytically (p = 0.077). Laplacian estimates based on the two models were calculated on electrocardiogram data for emulation of linearly increasing inter-ring distances tripolar concentric ring electrode. The difference between the estimates was not statistically significant (p >> 0.05) which is consistent with the analytic result.more » « less
- 
            A new record‐high room‐temperature electron Hall mobility (μRT = 194 cm2 V−1 s−1atn ≈ 8 × 1015 cm−3) for β‐Ga2O3is demonstrated in the unintentionally doped thin film grown on (010) semi‐insulating substrate via metal‐organic chemical vapor deposition (MOCVD). A peak electron mobility of ≈9500 cm2 V−1 s−1is achieved at 45 K. Further investigation on the transport properties indicates the existence of sheet charges near the epilayer/substrate interface. Si is identified as the primary contributor to the background carrier in both the epilayer and the interface, originating from both surface contamination and growth environment. The pregrowth hydrofluoric acid cleaning of the substrate leads to an obvious decrease in Si impurity both at the interface and in the epilayer. In addition, the effect of the MOCVD growth condition, particularly the chamber pressure, on the Si impurity incorporation is studied. A positive correlation between the background charge concentration and the MOCVD growth pressure is confirmed. It is noteworthy that in a β‐Ga2O3film with very low bulk charge concentration, even a reduced sheet charge density plays an important role in the charge transport properties.more » « less
- 
            Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    