In this paper, we design and evaluate a novel form of visually-simulated haptic feedback cue for communicating weight in robot teleoperation. We propose that a visuo-proprioceptive cue results from inconsistencies created between the user's visual and proprioceptive senses when the robot's movement differs from the movement of the user's input. In a user study where participants teleoperate a six-DoF robot arm, we demonstrate the feasibility of using such a cue for communicating weight in four telemanipulation tasks to enhance user experience and task performance.
more »
« less
Deep Correspondence Learning for Effective Robotic Teleoperation using Virtual Reality
By projecting into a 3-D workspace, robotic teleoperation using virtual reality allows for a more intuitive method of control for the operator than using a 2-D view from the robot's visual sensors. This paper investigates a setup that places the teleoperator in a virtual representation of the robot's environment and develops a deep learning based architecture modeling the correspondence between the operator's movements in the virtual space and joint angles for a humanoid robot using data collected from a series of demonstrations. We evaluate the correspondence model's performance in a pick-and - place teleoperation experiment.
more »
« less
- Award ID(s):
- 1652530
- PAR ID:
- 10179938
- Date Published:
- Journal Name:
- 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
- Page Range / eLocation ID:
- 477 to 483
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In remote applications that mandate human supervision, shared control can prove vital by establishing a harmonious balance between the high-level cognition of a user and the low-level autonomy of a robot. Though in practice, achieving this balance is a challenging endeavor that largely depends on whether the operator effectively interprets the underlying shared control. Inspired by recent works on using immersive technologies to expose the internal shared control, we develop a virtual reality system to visually guide human-in-the-loop manipulation. Our implementation of shared control teleoperation employs end effector manipulability polytopes, which are geometrical constructs that embed joint limit and environmental constraints. These constructs capture a holistic view of the constrained manipulator’s motion and can thus be visually represented as feedback for users on their operable space of movement. To assess the efficacy of our proposed approach, we consider a teleoperation task where users manipulate a screwdriver attached to a robotic arm’s end effector. A pilot study with prospective operators is first conducted to discern which graphical cues and virtual reality setup are most preferable. Feedback from this study informs the final design of our virtual reality system, which is subsequently evaluated in the actual screwdriver teleoperation experiment. Our experimental findings support the utility of using polytopes for shared control teleoperation, but hint at the need for longer-term studies to garner their full benefits as virtual guides.more » « less
-
Soft robotics holds tremendous potential for various applications, especially in unstructured environments such as search and rescue operations. However, the lack of autonomy and teleoperability, limited capabilities, absence of gait diversity and real-time control, and onboard sensors to sense the surroundings are some of the common issues with soft-limbed robots. To overcome these limitations, we propose a spatially symmetric, topologically-stable, soft-limbed tetrahedral robot that can perform multiple locomotion gaits. We introduce a kinematic model, derive locomotion trajectories for different gaits, and design a teleoperation mechanism to enable real-time human-robot collaboration. We use the kinematic model to map teleoperation inputs and ensure smooth transitions between gaits. Additionally, we leverage the passive compliance and natural stability of the robot for toppling and obstacle navigation. Through experimental tests, we demonstrate the robot's ability to tackle various locomotion challenges, adapt to different situations, and navigate obstructed environments via teleoperation.more » « less
-
Extreme environments, such as search and rescue missions, defusing bombs, or exploring extraterrestrial planets, are unsafe environments for humans to be in. Robots enable humans to explore and interact in these environments through remote presence and teleoperation and virtual reality provides a medium to create immersive and easy-to-use teleoperation interfaces. However, current virtual reality interfaces are still very limited in their capabilities. In this work, we aim to advance robot teleoperation virtual reality interfaces by developing an environment reconstruction methodology capable of recognizing objects in a robot’s environment and rendering high fidelity models inside a virtual reality headset. We compare our proposed environment reconstruction method against traditional point cloud streaming by having operators plan waypoint trajectories to accomplish a pick-and-place task. Overall, our results show that users find our environment reconstruction method more usable and less cognitive work compared to raw point cloud streaming.more » « less
-
A new control paradigm using angular momentum and foot placement as state variables in the linear inverted pendulum model has expanded the realm of possibilities for the control of bipedal robots. This new paradigm, known as the ALIP model, has shown effectiveness in cases where a robot's center of mass height can be assumed to be constant or near constant as well as in cases where there are no non-kinematic restrictions on foot placement. Walking up and down stairs violates both of these assumptions, where center of mass height varies significantly within a step and the geometry of the stairs restrict the effectiveness of foot placement. In this paper, we explore a variation of the ALIP model that allows the length of the virtual pendulum formed by the robot's stance foot and center of mass to follow smooth trajectories during a step. We couple this model with a control strategy constructed from a novel combination of virtual constraint-based control and a model predictive control algorithm to stabilize a stair climbing gait that does not soley rely on foot placement. Simulations on a 20-degree of freedom model of the Cassie biped in the SimMechanics simulation environment show that the controller is able to achieve periodic gait.more » « less
An official website of the United States government

