skip to main content


Title: Proximity-induced magnetization in graphene: Towards efficient spin gating
Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to the Fermi level. In the Co/Pt/Gr system the proximity-induced spin polarization in graphene and its gate control are strongly enhanced by the presence of a surface band near the Fermi level. Furthermore, the shift of the Dirac point could be eliminated entirely by selecting submonolayer coverage in the passivation layer. Our findings open a path towards experimental realization of an optimized two-dimensional system with gate-tunable spin-dependent properties.  more » « less
Award ID(s):
1810266
NSF-PAR ID:
10180051
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical review materials
Volume:
4
Issue:
114006
ISSN:
2475-9953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The nature of the atomic configuration and the bonding within epitaxial Pt‐graphene films is investigated. Graphene‐templated monolayer/few‐multilayers of Pt, synthesized as contiguous 2D films by room temperature electrochemical methods, is shown to exhibit a stable {100} structure in the 1–2 layer range. The fundamental question being investigated is whether surface Pt atoms rendered in these 2D architectures are as stable as those of their bulk Pt counterparts. Unsurprisingly, a single layer Pt on the graphene (Pt_1ML/GR) shows much larger Pt dissociation energy (−7.51 eV) than does an isolated Pt atom on graphene. However, the dissociation energy from Pt_1ML/GR is similar to that of bulk Pt(100), −7.77 eV, while in bi‐layer Pt on the graphene (Pt_2ML/GR), this energy changes to −8.63 eV, surpassing its bulk counterpart. At Pt_2ML/GR, the dissociation energy also slightly surpasses that of bulk Pt(111). Bulk‐like stability of atomically thin Pt–graphene results from a combination of interplanar PtC covalent bonding and inter/intraplanar metallic bonding. This unprecedented stability is also accompanied by a metal‐like presence of electronic states at the Fermi level. Such atomically thin metal‐graphene architectures can be a new stable platform for synthesizing 2D metallic films with various applications in catalysis, sensing, and electronics.

     
    more » « less
  2. Abstract

    We examine the characteristics of the microwave/mm-wave/terahertz radiation-induced magnetoresistance oscillations in monolayer and bilayer graphene and report that the oscillation frequency of the radiation-induced magnetoresistance oscillations in the massless, linearly dispersed monolayer graphene system should depend strongly both on the Fermi energy, and the radiation frequency, unlike in the case of the massive, parabolic, GaAs/AlGaAs 2D electron system, where the radiation-induced magnetoresistance oscillation frequency depends mainly on the radiation frequency. This possible dependence of the magnetoresistance oscillation frequency on the Fermi level at a fixed radiation frequency also suggests a sensitivity to the gate voltage in gated graphene, which suggests anin-situtunable photo-excitation response in monolayer graphene that could be useful for sensing applications. In sharp contrast to monolayer graphene, bilayer graphene is expected to show radiation-induced magnetoresistance oscillations more similar to the results observed in the GaAs/AlGaAs 2D system. Such expectations for the radiation-induced magnetoresistance oscillations are presented here to guide future experimental studies in both of these modern atomic layer material systems.

     
    more » « less
  3. Abstract

    In graphene devices, the electronic drift velocity can easily exceed the speed of sound in the material at moderate current biases. Under these conditions, the electronic system can efficiently amplify acoustic phonons, leading to an exponential growth of sound waves in the direction of the carrier flow. Here, we show that such phonon amplification can significantly modify the electrical properties of graphene devices. We observe a superlinear growth of the resistivity in the direction of the carrier flow when the drift velocity exceeds the speed of sound — resulting in a sevenfold increase over a distance of 8 µm. The resistivity growth is observed at carrier densities away from the Dirac point and is enhanced at cryogenic temperatures. We develop a theoretical model for the resistivity growth due to the electrical amplification of acoustic phonons — reaching frequencies up to 2.2 THz — where the wavelength is controlled by gate-tunable transitions across the Fermi surface. These findings provide a route to on-chip high-frequency sound generation and detection in the THz frequency range.

     
    more » « less
  4. Abstract The rational design of the electronic band structures and the associated properties (e.g. optical) of advanced materials has remained challenging for crucial applications in optoelectronics, solar desalination, advanced manufacturing technologies, etc. In this work, using first-principles calculations, we studied the prospects of tuning the absorption spectra of graphene via defect engineering, i.e. chemical doping and oxidation. Our computational analysis shows that graphene functionalization with single hydroxyl and carboxylic acid fails to open a band gap in graphene. While single epoxide functionalization successfully opens a bandgap in graphene and increases absorptivity, however, other optical properties such as reflection, transmission, and dielectric constants are significantly altered. Boron and nitrogen dopants lead to p- and n-type doping, respectively, while fluorine dopants or a single-carbon atomic vacancy cannot create a significant bandgap in graphene. By rigorously considering the spin-polarization effect, we find that titanium, zirconium, and hafnium dopants can create a bandgap in graphene via an induced flat band around the Fermi level as well as the collapse of the Dirac cone. In addition, silicon, germanium, and tin dopants are also effective in improving the optical characteristics. Our work is important for future experimental work on graphene for laser and optical processing applications. 
    more » « less
  5. Abstract

    The valley Zeeman physics of excitons in monolayer transition metal dichalcogenides provides valuable insight into the spin and orbital degrees of freedom inherent to these materials. Being atomically-thin materials, these degrees of freedom can be influenced by the presence of adjacent layers, due to proximity interactions that arise from wave function overlap across the 2D interface. Here, we report 60 T magnetoreflection spectroscopy of the A- and B- excitons in monolayer WS2, systematically encapsulated in monolayer graphene. While the observed variations of the valley Zeeman effect for the A- exciton are qualitatively in accord with expectations from the bandgap reduction and modification of the exciton binding energy due to the graphene-induced dielectric screening, the valley Zeeman effect for the B- exciton behaves markedly different. We investigate prototypical WS2/graphene stacks employing first-principles calculations and find that the lower conduction band of WS2at theK/Kvalleys (theCBband) is strongly influenced by the graphene layer on the orbital level. Specifically, our detailed microscopic analysis reveals that the conduction band at theQpoint of WS2mediates the coupling betweenCBand graphene due to resonant energy conditions and strong coupling to the Dirac cone. This leads to variations in the valley Zeeman physics of the B- exciton, consistent with the experimental observations. Our results therefore expand the consequences of proximity effects in multilayer semiconductor stacks, showing that wave function hybridization can be a multi-step energetically resonant process, with different bands mediating the interlayer interactions. Such effects can be further exploited to resonantly engineer the spin-valley degrees of freedom in van der Waals and moiré heterostructures.

     
    more » « less