skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quiver varieties and symmetric pairs
We study fixed-point loci of Nakajima varieties under symplectomorphisms and their antisymplectic cousins, which are compositions of a diagram isomorphism, a reflection functor, and a transpose defined by certain bilinear forms. These subvarieties provide a natural home for geometric representation theory of symmetric pairs. In particular, the cohomology of a Steinberg-type variety of the symplectic fixed-point subvarieties is conjecturally related to the universal enveloping algebra of the subalgebra in a symmetric pair. The latter symplectic subvarieties are further used to geometrically construct an action of a twisted Yangian on a torus equivariant cohomology of Nakajima varieties. In the type A case, these subvarieties provide a quiver model for partial Springer resolutions of nilpotent Slodowy slices of classical groups and associated symmetric spaces, which leads to a rectangular symmetry and a refinement of Kraft-Procesi row/column removal reductions.  more » « less
Award ID(s):
1801915
PAR ID:
10180129
Author(s) / Creator(s):
Date Published:
Journal Name:
Representation theory
Volume:
23
Issue:
2019
ISSN:
1088-4165
Page Range / eLocation ID:
1-56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro (Ed.)
    Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type. 
    more » « less
  2. Tu, Loring W (Ed.)
    We aim in this manuscript to describe a specific notion of geomet- ric positivity that manifests in cohomology rings associated to the flag variety G/B and, in some cases, to subvarieties of G/B. We offer an exposition on the the well-known geometric basis of the homology of G/B provided by Schubert varieties, whose dual basis in cohomology has nonnegative structure constants. In recent work [R. Goldin, L. Mihalcea, and R. Singh, Positivity of Peterson Schubert Calculus, arXiv2106.10372] we showed that the equivariant cohomology of Peterson varieties satisfies a positivity phenomenon similar to that for Schubert calculus for G/B. Here we explain how this positivity extends to this particular nilpotent Hessenberg variety, and offer some open questions about the ingredients for extending positivity results to other Hessenberg varieties. 
    more » « less
  3. The universal centralizer of a semisimple algebraic group is the family of centralizers of regular elements, parametrized by their conjugacy classes. When the group is of adjoint type, we construct a smooth, log-symplectic fiberwise compactification of the universal centralizer by taking the closure of each fiber in the wonderful compactification. We use the geometry of the wonderful compactification to give an explicit description of the symplectic leaves of this new space. We also show that its compactified centralizer fibers are isomorphic to certain Hessenberg varieties—we apply this connection to compute the singular cohomology of the compactification, and to study the geometry of the corresponding universal Hessenberg family. 
    more » « less
  4. Müller, Werner; Shin, Sug Woo; Templier, Nicolas (Ed.)
    ThetheoryofGaloisrepresentationsattachedtoautomorphicrepresenta- tions of GL(n) is largely based on the study of the cohomology of Shimura varieties of PEL type attached to unitary similitude groups. The need to keep track of the similitude factor complicates notation while making no difference to the final result. It is more natural to work with Shimura varieties attached to the unitary groups themselves, which do not introduce these unnecessary complications; however, these are of abelian type, not of PEL type, and the Galois representations on their cohomology differ slightly from those obtained from the more familiar Shimura varieties. Results on the critical values of the L-functions of these Galois representations have been established by studying the PEL type Shimura varieties. It is not immediately obvious that the automorphic periods for these varieties are the same as for those attached to unitary groups, which appear more naturally in applications of relative trace formulas, such as the refined Gan-Gross-Prasad conjecture (conjecture of Ichino-Ikeda and N. Harris). The present article reconsiders these critical values, using the Shimura varieties attached to unitary groups, and obtains results that can be used more simply in applications. 
    more » « less
  5. Abstract We define quantum equivariant K-theory of Nakajima quiver varieties. We discuss type A in detail as well as its connections with quantum XXZ spin chains and trigonometric Ruijsenaars-Schneider models. Finally we study a limit which produces a K-theoretic version of results of Givental and Kim, connecting quantum geometry of flag varieties and Toda lattice. 
    more » « less