Abstract Let $$\textsf {X}$$ and $$\textsf {X}^{!}$$ be a pair of symplectic varieties dual with respect to 3D mirror symmetry. The $$K$$-theoretic limit of the elliptic duality interface is an equivariant $$K$$-theory class $$\mathfrak {m} \in K(\textsf {X}\times \textsf {X}^{!})$$. We show that this class provides correspondences $$ \begin{align*} & \Phi_{\mathfrak{m}}: K(\textsf{X}) \leftrightarrows K(\textsf{X}^{!}) \end{align*}$$mapping the $$K$$-theoretic stable envelopes to the $$K$$-theoretic stable envelopes. This construction allows us to relate various representation theoretic objects of $$K(\textsf {X})$$, such as action of quantum groups, quantum dynamical Weyl groups, $$R$$-matrices, etc., to those for $$K(\textsf {X}^{!})$$. In particular, we relate the wall $$R$$-matrices of $$\textsf {X}$$ to the $$R$$-matrices of the dual variety $$\textsf {X}^{!}$$. As an example, we apply our results to $$\textsf {X}=\textrm {Hilb}^{n}({{\mathbb {C}}}^2)$$—the Hilbert scheme of $$n$$ points in the complex plane. In this case, we arrive at the conjectures of Gorsky and Negut from [10]. 
                        more » 
                        « less   
                    
                            
                            Quantum K-theory of quiver varieties and many-body systems
                        
                    
    
            Abstract We define quantum equivariant K-theory of Nakajima quiver varieties. We discuss type A in detail as well as its connections with quantum XXZ spin chains and trigonometric Ruijsenaars-Schneider models. Finally we study a limit which produces a K-theoretic version of results of Givental and Kim, connecting quantum geometry of flag varieties and Toda lattice. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2054527
- PAR ID:
- 10326519
- Date Published:
- Journal Name:
- Selecta Mathematica
- Volume:
- 27
- Issue:
- 5
- ISSN:
- 1022-1824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Given a closed symplectic manifoldX, we construct Gromov-Witten-type invariants valued both in (complex)K-theory and in any complex-oriented cohomology theory$$\mathbb{K}$$which isKp(n)-local for some MoravaK-theoryKp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantumK-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantumK-theory and quantum$$\mathbb{K}$$-theory as commutative deformations of the corresponding (generalised) cohomology rings ofX; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus toX. On the algebraic side, in order to establish a common framework covering both ordinaryK-theory andKp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.more » « less
- 
            Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
- 
            Abstract We extend the decomposition theorem for numerically K -trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically K -trivial case of a conjecture of Campana and Peternell.more » « less
- 
            Karshon, Yael; Melrose, Richard; Uhlmann, Gunther; Uribe, Alejandro (Ed.)Hessenberg varieties H(X,H) form a class of subvarieties of the flag variety G/B, parameterized by an operator X and certain subspaces H of the Lie algebra of G. We identify several families of Hessenberg varieties in type A_{n−1} that are T -stable subvarieties of G/B, as well as families that are invariant under a subtorus K of T. In particular, these varieties are candidates for the use of equivariant methods to study their geometry. Indeed, we are able to show that some of these varieties are unions of Schubert varieties, while others cannot be such unions. Among the T-stable Hessenberg varieties, we identify several that are GKM spaces, meaning T acts with isolated fixed points and a finite number of one-dimensional orbits, though we also show that not all Hessenberg varieties with torus actions and finitely many fixed points are GKM. We conclude with a series of open questions about Hessenberg varieties, both in type A_{n−1} and in general Lie type.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    