We demonstrate efficient on-chip green light generation via frequency upconversion in silicon nitride–thin-film lithium niobate (SiN-TFLN) hybrid waveguides, obtained by transfer printing LN coupons on selected areas of photonic integrated circuits (PICs). By utilizing modal phase matching (MPM), our devices achieve a high normalized conversion efficiency of 42.5% W−1cm−2in a single-pass, 2.4-mm-long waveguide configuration. The SiN–LN transition in the waveguide inherently facilitates mode conversion, transforming a higher-order second-harmonic mode into a fundamental TE mode, ensuring coherent, narrow-linewidth, green light emission. Our waveguide platform gives rise to a wavelength shift of ∼1 nm for every 10 nm of waveguide width variation and temperature-induced wavelength tuning of ∼0.02 nm/°C. 
                        more » 
                        « less   
                    
                            
                            Monolithic chalcogenide glass waveguide integrated interband cascaded laser
                        
                    
    
            Mid-infrared photonic integrated circuits (PICs) that combine on-chip light sources with other optical components constitute a key enabler for applications such as chemical sensing, light detection, ranging, and free-space communications. In this paper, we report the monolithic integration of interband cascade lasers emitting at 3.24 µm with passive, high-index-contrast waveguides made of chalcogenide glasses. Output from the chalcogenide waveguides exhibits pulsed peak power up to 150 mW (without roll-over), threshold current density 280 A/cm2, and slope efficiency 100 mW/A at 300 K, with a lower bound of 38% efficiency for coupling between the two waveguides. These results represent an important step toward the realization of fully integrated mid-infrared PICs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1200406
- PAR ID:
- 10284555
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optical Materials Express
- Volume:
- 11
- Issue:
- 9
- ISSN:
- 2159-3930
- Format(s):
- Medium: X Size: Article No. 2869
- Size(s):
- Article No. 2869
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.more » « less
- 
            Photonic integrated circuits (PICs) are vital for developing affordable, high-performance optoelectronic devices that can be manufactured at an industrial scale, driving innovation and efficiency in various applications. Optical loss of modes in thin film waveguides and devices is a critical measure of their performance. Thin film growth, lithography, masking, and etching processes are imperfect processes that introduce significant sidewall and top-surface roughness and cause dominating optical losses in waveguides and photonic structures. This roughness, as perturbations couple light from guided to far-field radiation modes, leads to scattering losses that can be estimated from theoretical models. Typically, with UV-based lithography, sidewall roughness is significantly larger than wafer-top surface roughness. Atomic force microscopy (AFM) imaging measurement gives a 3D and high-resolution roughness profile, but the measurement is inconvenient, costly, and unscalable for large-scale PICs and at wafer-scale. Here, we evaluate the sidewall roughness profile based on 2D high-resolution scanning electron microscope (SEM) imaging. We characterized the loss on two homemade nitride and oxide films on 3-inch silicon wafers with 12 waveguide devices on each and correlated the scattering loss estimated from a 2D image-based sidewall profile and theoretical Payne model. The lowest loss of guided fundamental transverse electric (TE0) mode is found at 0.075 dB/cm at 633 nm across 24 devices, a record at visible wavelength. Our work shows 100% success (edge continuity span exceeding 95% of image width/height) in edge detection in image processing of all images to estimate autocorrelation function and optical mode loss. These demonstrations offer valuable insights into waveguide sidewall roughness and a comparison of experimental and 2D SEM image processing based loss estimations with applications in loss characterization at wafer-scale PICs.more » « less
- 
            Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs−InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs−InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer−Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs−InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device’s footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy.more » « less
- 
            Abstract High-quality optical ring resonators can confine light in a small volume and store it for millions of roundtrips. They have enabled the dramatic size reduction from laboratory scale to chip level of optical filters, modulators, frequency converters, and frequency comb generators in the visible and the near-infrared. The mid-infrared spectral region (3−12 μm), as important as it is for molecular gas sensing and spectroscopy, lags behind in development of integrated photonic components. Here we demonstrate the integration of mid-infrared ring resonators and directional couplers, incorporating a quantum cascade active region in the waveguide core. It enables electrical control of the resonant frequency, its quality factor, the coupling regime and the coupling coefficient. We show that one device, depending on its operating point, can act as a tunable filter, a nonlinear frequency converter, or a frequency comb generator. These concepts extend to the integration of multiple active resonators and waveguides in arbitrary configurations, thus allowing the implementation of purpose-specific mid-infrared active photonic integrated circuits for spectroscopy, communication, and microwave generation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
